ﻻ يوجد ملخص باللغة العربية
We extend on ideas from standard thermodynamics to show that temperature can be assigned to a general nonequilibrium quantum system. By choosing a physically motivated complete set of observables and expanding the system state thereupon, one can read a set of relevant, independent thermodynamic variables which include internal energy. This expansion allows us to read a nonequilibrium temperature as the partial derivative of the von Neumann entropy with respect to internal energy. We show that this definition of temperature is one of a set of thermodynamics parameters unambiguously describing the system state. It has appealing features such as positivity for passive states and consistency with the standard temperature for thermal states. By attributing temperature to correlations in a bipartite system, we obtain a universal relation which connects the temperatures of subsystems, total system as a whole, and correlation. All these temperatures can be different even when the composite system is in a well-defined Gibbsian thermal state.
We formulate exact generalized nonequilibrium fluctuation relations for the quantum mechanical harmonic oscillator coupled to multiple harmonic baths. Each of the different baths is prepared in its own individual (in general nonthermal) state. Starti
Continuing our work on the nature and existence of fluctuation-dissipation relations (FDR) in linear and nonlinear open quantum systems [1-3], here we consider such relations when a linear system is in a nonequilibrium steady state (NESS). With the m
Measuring local temperatures of open systems out of equilibrium is emerging as a novel approach to study the local thermodynamic properties of nanosystems. An operational protocol has been proposed to determine the local temperature by coupling a pro
We investigate the quantum thermal transistor effect in nonequilibrium three-level systems by applying the polaron transformed Redfield equation combined with full counting statistics. The steady state heat currents are obtained via this unified appr
Describing open quantum systems far from equilibrium is challenging, in particular when the environment is mesoscopic, when it develops nonequilibrium features during the evolution, or when the memory effects cannot be disregarded. Here, we derive a