ﻻ يوجد ملخص باللغة العربية
Superconductors with nontrivial band structure topology represent a class of materials with unconventional and potentially useful properties. Recent years have seen much success in creating artificial hybrid structures exhibiting main characteristics of two-dimensional (2D) topological superconductors. Yet, bulk materials known to combine inherent superconductivity with nontrivial topology remain scarce, largely because distinguishing their central characteristic -- topological surface states -- proved challenging due to a dominant contribution from the superconducting bulk. Reported here is a highly anomalous behaviour of surface superconductivity in topologically nontrivial 3D superconductor In2Bi where the surface states result from its nontrivial band structure, which itself is a consequence of the non-symmorphic crystal symmetry and strong spin-orbit coupling. In contrast to smoothly decreasing diamagnetic susceptibility above the bulk critical field Hc2, associated with surface superconductivity in conventional superconductors, we observe near-perfect, Meissner-like screening of low-frequency magnetic fields well above Hc2. The enhanced diamagnetism disappears at a new phase transition close to the critical field of surface superconductivity Hc3. Using theoretical modelling, we show that the anomalous screening is consistent with modification of surface superconductivity due to the presence of topological surface states. The demonstrated possibility to detect signatures of the surface states using macroscopic magnetization measurements provides an important new tool for discovery and identification of topological superconductors.
Quantum materials with non-trivial band topology and bulk superconductivity are considered superior materials to realize topological superconductivity. In this regard, we report detailed Density Functional Theory (DFT) calculations and Z2 invaraints
The discovery of signatures of topological superconductivity in superconducting bulk materials with topological surface states has attracted intensive research interests recently. Utilizing angle-resolved photoemission spectroscopy and first-principl
We study the temperature dependence of the magnetic penetration depth in a 3D topological superconductor (TSC), incorporating the paramagnetic current due to the surface states. A TSC is predicted to host a gapless 2D surface Majorana fluid. In addit
We report a polarized Raman scattering study of non-symmorphic topological insulator KHgSb with hourglass-like electronic dispersion. Supported by theoretical calculations, we show that the lattice of the previously assigned space group $P6_3/mmc$ (N
Under certain conditions, a fermion in a superconductor can separate in space into two parts known as Majorana zero modes, which are immune to decoherence from local noise sources and are attractive building blocks for quantum computers. Promising ex