ﻻ يوجد ملخص باللغة العربية
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics. In this work we present detailed studies on the limiting factors to achieve Fourier Transform limited spectral lines. Specifically, we study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures. We show that the linewidths of hBN quantum emitters are phonon broadened, even at 5K, with typical values of the order of one GHz. While spectral diffusion dominates at increasing pump powers, it can be minimized by working well below saturation excitation power. Our results are important for future utilization of quantum emitters in hBN for quantum interference experiments.
Solid-state quantum emitters are garnering a lot of attention due to their role in scalable quantum photonics. A notable majority of these emitters, however, exhibit spectral diffusion due to local, fluctuating electromagnetic fields. In this work, w
Nanoscale optical thermometry is a promising non-contact route for measuring local temperature with both high sensitivity and spatial resolution. In this work, we present a deterministic optical thermometry technique based on quantum emitters in nano
Single photon emitters in two-dimensional materials are promising candidates for future generation of quantum photonic technologies. In this work, we experimentally determine the quantum efficiency (QE) of single photon emitters (SPE) in few-layer he
We propose an electromechanical scheme where the electronic degrees of freedom of boron vacancy color centers hosted by a hexagonal boron nitride nanoribbon are coupled for quantum information processing. The mutual coupling of color centers is provi
Hexagonal Boron Nitride (hBN) mono and multilayers are promising hosts for room temperature single photon emitters (SPEs). In this work we explore high energy (~ MeV) electron irradiation as a means to generate stable SPEs in hBN. We investigate four