ترغب بنشر مسار تعليمي؟ اضغط هنا

Multicolor Variability of Young Stars in the Lagoon Nebula: Driving Causes and Intrinsic Timescales

202   0   0.0 ( 0 )
 نشر من قبل Laura Venuti
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Space observatories have provided unprecedented depictions of the many variability behaviors typical of low-mass, young stars. However, those studies have so far largely omitted more massive objects ($sim$2 $M_odot$ to 4-5 $M_odot$), and were limited by the absence of simultaneous, multi-wavelength information. We present a new study of young star variability in the $sim$1-2 Myr-old, massive Lagoon Nebula region. Our sample encompasses 278 young, late-B to K-type stars, monitored with Kepler/K2. Auxiliary $u,g,r,i,Halpha$ time series photometry, simultaneous with K2, was acquired at the Paranal Observatory. We employed this comprehensive dataset and archival infrared photometry to determine individual stellar parameters, assess the presence of circumstellar disks, and tie the variability behaviors to inner disk dynamics. We found significant mass-dependent trends in variability properties, with B/A stars displaying substantially reduced levels of variability compared to G/K stars for any light curve morphology. These properties suggest different magnetic field structures at the surface of early-type and later-type stars. We also detected a dearth of some disk-driven variability behaviors, particularly dippers, among stars earlier than G. This indicates that their higher surface temperatures and more chaotic magnetic fields prevent the formation and survival of inner disk dust structures co-rotating with the star. Finally, we examined the characteristic variability timescales within each light curve, and determined that the day-to-week timescales are predominant over the K2 time series. These reflect distinct processes and locations in the inner disk environment, from intense accretion triggered by instabilities in the innermost disk regions, to variable accretion efficiency in the outer magnetosphere.

قيم البحث

اقرأ أيضاً

We present preliminary results of the first near-infrared variability study of the Arches cluster, using adaptive optics data from NIRI/Gemini and NACO/VLT. The goal is to discover eclipsing binaries in this young (2.5 +- 0.5 Myr), dense, massive clu ster for which we will determine accurate fundamental parameters with subsequent spectroscopy. Given that the Arches cluster contains more than 200 Wolf-Rayet and O-type stars, it provides a rare opportunity to determine parameters for some of the most massive stars in the Galaxy.
We observed a field of $16times 16$ in the star-forming region Pelican Nebula (IC 5070) at $BVRI$ wavelengths for 90 nights spread over one year in 2012-2013. More than 250 epochs in $VRI$-bands are used to identify and classify variables up to $Vsim 21$~mag. We present a catalogue of optical time-series photometry with periods, mean-magnitudes and classifications for 95 variable stars including 67 pre-main-sequence variables towards star-forming region IC 5070. The pre-main-sequence variables are further classified as candidate classical T Tauri and weak-line T Tauri stars based on their light curve variations and the locations on the color-color and color-magnitude diagrams using optical and infrared data together with Gaia DR2 astrometry. Classical T Tauri stars display variability amplitudes up to three times the maximum fluctuation in disk-free weak-line T Tauri stars, which show strong periodic variations. Short-term variability is missed in our photometry within single nights. Several classical T Tauri stars display long-lasting ($geq 10$ days) single or multiple fading and brightening events up to a couple of magnitudes at optical wavelengths. The typical mass and age of the pre-main-sequence variables from the isochrone-fitting and spectral energy distributions are estimated to be $le 1~M_odot$ and $sim 2$ Myr, respectively. We do not find any correlation between the optical amplitudes or periods with the physical parameters (mass and age) of pre-main-sequence stars.
Young stars exhibit short-term photometric variability caused by mass accretion events from circumstellar disks, the presence of dusty warps within the inner disks, starspots that rotate across the stellar surfaces, and flares. Long-term variability also occurs owing to starspot longevity and cycles, and from changes in stellar angular momenta and activity as the stars age. We propose to observe the Carina star-forming region in different bands with a cadence of 30 minutes every night for one week per year to clarify the nature of both the short-term and long-term variability of the thousands of young stars in this region. By obtaining well-sampled multicolor lightcurves of this dense young cluster, LSST would acquire the first statistically significant data on how these objects vary on both short and long timescales. This information will allow us to relate the observed variability to stellar properties such as mass, age, binarity, and to environmental properties such as location within or exterior to the H II region, and to the presence or absence of a circumstellar disk.
58 - Mark J. Pecaut 2016
We highlight differences in spectral types and intrinsic colors observed in pre-main sequence (pre-MS) stars. Spectral types of pre-MS stars are wavelength-dependent, with near-infrared spectra being 3-5 spectral sub-classes later than the spectral t ypes determined from optical spectra. In addition, the intrinsic colors of young stars differ from that of main-sequence stars at a given spectral type. We caution observers to adopt optical spectral types over near-infrared types, since Hertzsprung-Russell (H-R) diagram positions derived from optical spectral types provide consistency between dynamical masses and theoretical evolutionary tracks. We also urge observers to deredden pre-MS stars with tabulations of intrinsic colors specifically constructed for young stars, since their unreddened colors differ from that of main sequence dwarfs. Otherwise, V-band extinctions as much as ~0.6 mag erroneously higher than the true extinction may result, which would introduce systematic errors in the H-R diagram positions and thus bias the inferred ages.
We present the first results from a 124 night J, H, K near-infrared monitoring campaign of the dark cloud L 1003 in Cygnus OB7, an active star-forming region. Using 3 seasons of UKIRT observations spanning 1.5 years, we obtained high-quality photomet ry on 9,200 stars down to J=17 mag, with photometric uncertainty better than 0.04 mag. On the basis of near-infrared excesses from disks, we identify 30 pre-main sequence stars, including 24 which are newly discovered. We analyze those stars and find the NIR excesses are significantly variable. All 9,200 stars were monitored for photometric variability; among the field star population, about 160 exhibited near-infrared variability (1.7% of the sample). Of the 30 YSOs (young stellar objects), 28 of them (93%) are variable at a significant level. 25 of the 30 YSOs have near-infrared excess consistent with simple disk-plus-star classical T Tauri models. Nine of these (36%) drift in color space over the course of these observations and/or since 2MASS observations such that they cross the boundary defining the NIR excess criteria; effectively, they have a transient near-infrared excess. About half of the YSOs have color-space variations parallel to either the classical T Tauri star locus or a hybrid track which includes the dust reddening trajectory. This indicates that the NIR variability in YSOs that possess accretion disks arises from a combination of variable extinction and changes in the inner accretion disk: either in accretion rate, central hole size and/or the inclination of the inner disk. While some variability may be due to stellar rotation, the level of variability on the individual stars can exceed a magnitude. This is a strong empirical suggestion that protoplanetary disks are quite dynamic and exhibit more complex activity on short timescales than is attributable to rotation alone or captured in static disk models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا