ﻻ يوجد ملخص باللغة العربية
Cosmic rays (CRs) are thought to be an important feedback mechanism in star-forming galaxies. They can provide an important source of pressure support and possibly drive outflows. We perform multidimensional CR-magnetohydrodynamic simulations including transport by streaming and diffusion to investigate wind launching from an initially hydrostatic atmosphere by CRs. We estimate a characteristic Eddington limit on the CR flux for which the CR force exceeds gravity and compare it to simulated systems. Scaling our results to conditions in star-forming galaxies, we find that CRs are likely to contribute to driving outflows for a broad range of star formation environments. We quantify the momentum and energy transfer between CRs and gas, along with the associated mass outflow rates under different assumptions about the relative importance of streaming and diffusion for transport. In simulations with streaming, we observe the growth and saturation of the CR acoustic instability, but the CRs and gas remain well coupled, with CR momentum transferred efficiently to the gas even when this instability is present. Higher CR fluxes transferr more energy to the gas and drive stronger outflows. When streaming is present, most of the transferred energy takes the form of Alfv{e}n wave heating of the gas, raising its pressure and internal energy, with a lower fractional contribution to the kinetic energy of the outflow. We also consider runs with radiative cooling, which modifies gas temperature and pressure profiles but does not seem to have a large impact on the mass outflow for super-Eddington CR fluxes.
Cosmic rays (CRs) are a plausible mechanism for launching winds of cool material from the discs of star-forming galaxies. However, there is no consensus on what types of galaxies likely host CR-driven winds, or what role these winds might play in reg
We study the effects of cosmic rays (CRs) on outflows from star-forming galaxies in the circum and inter-galactic medium (CGM/IGM), in high-resolution, fully-cosmological FIRE-2 simulations (accounting for mechanical and radiative stellar feedback, m
We present new developments on the Cosmic--Ray driven, galactic dynamo, modeled by means of direct, resistive CR--MHD simulations, performed with ZEUS and PIERNIK codes. The dynamo action, leading to the amplification of large--scale galactic magneti
In this paper, we build from previous work (Bustard et al. 2018) and present simulations of recent (within the past Gyr), magnetized, cosmic ray driven outflows from the Large Magellanic Cloud (LMC), including our first attempts to explicitly use the
Substantial evidence in the last few decades suggests that outflows from supermassive black holes (SMBH) may play a significant role in the evolution of galaxies.Large-scale outflows known as warm absorbers (WA) and fast disk winds known as ultra-fas