ﻻ يوجد ملخص باللغة العربية
We study theoretically optomechanical interactions in a semiconductor microcavity with embedded quantum well under the optical pumping by a Bessel beam, carrying a non-zero orbital momentum. Due to the transfer of orbital momentum from light to phonons, the microcavity can act as an acoustic circulator: it rotates the propagation direction of the incident phonon by a certain angle clockwise or anticlockwise. Due to the optomechanical heating and cooling effects, the circulator can also function as an acoustic laser emitting sound with nonzero angular momentum. Our calculations demonstrate the potential of semiconductor microcavities for compact integrable optomechanical devices.
We study a system of interacting matter quasiparticles strongly coupled to photons inside an optomechanical cavity. The resulting normal modes of the system are represented by hybrid polaritonic quasiparticles, which acquire effective nonlinearity. I
Topological materials rely on engineering global properties of their bulk energy bands called topological invariants. These invariants, usually defined over the entire Brillouin zone, are related to the existence of protected edge states. However, fo
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. In such materials light propagation is unusual, leading to novel and often non-intuitive optical phenomena. Here we re
We report on the first experimental observation of spin noise in a single semiconductor quantum well embedded into a microcavity. The great cavity-enhanced sensitivity to fluctuations of optical anisotropy has allowed us to measure the Kerr rotation
Recent progress in optomechanical systems may soon allow the realization of optomechanical arrays, i.e. periodic arrangements of interacting optical and vibrational modes. We show that photons and phonons on a honeycomb lattice will produce an optica