ﻻ يوجد ملخص باللغة العربية
Cell membranes are a key element of life because they keep the genetic material and metabolic machinery together. All present cell membranes are made of phospholipids, yet the nature of the first membranes and the origin of phospholipids are still under debate. We report here the first detection in space of ethanolamine, NH$_2$CH$_2$CH$_2$OH, which forms the hydrophilic head of the simplest and second most abundant phospholipid in membranes. The molecular column density of ethanolamine in interstellar space is $N$=(1.51$pm$0.07)$times$10$^{13}$ cm$^{-2}$, implying a molecular abundance with respect to H$_2$ of (0.9-1.4)$times$10$^{-10}$. Previous studies reported its presence in meteoritic material but they suggested that it is synthesized in the meteorite itself by decomposition of amino acids. However, we find that the proportion of the molecule with respect to water in the interstellar medium is similar to the one found in the meteorite (10$^{-6}$). These results indicate that ethanolamine forms efficiently in space and, if delivered onto early Earth, it could have contributed to the assembling and early evolution of primitive membranes.
We write in response to the call from the 2020 Decadal Survey to submit white papers illustrating the most pressing scientific questions in astrophysics for the coming decade. We propose exploration as the central question for the Decadal Committees
Context: The $beta$ Pictoris moving group is one of the most well-known young associations in the solar neighbourhood and several members are known to host circumstellar discs, planets, and comets. Measuring its age with precision is basic to study s
Peptide bonds, as the molecular bridges that connect amino acids, are crucial to the formation of proteins. Searches and studies of molecules with embedded peptide-like bonds are thus important for the understanding of protein formation in space. Her
Through the combination of high-order Adaptive Optics and coronagraphy, we report the discovery of a faint stellar companion to the A3V star zeta Virginis. This companion is ~7 magnitudes fainter than its host star in the H-band, and infrared imaging
Following the results of our previous low frequency searches for extraterrestrial intelligence (SETI) using the Murchison Widefield Array (MWA), directed toward the Galactic Centre and the Orion Molecular Cloud (Galactic Anticentre), we report a new