ﻻ يوجد ملخص باللغة العربية
Although the use of pay-per-click mechanisms stimulates the prosperity of the mobile advertisement network, fraudulent ad clicks result in huge financial losses for advertisers. Extensive studies identify click fraud according to click/traffic patterns based on dynamic analysis. However, in this study, we identify a novel click fraud, named humanoid attack, which can circumvent existing detection schemes by generating fraudulent clicks with similar patterns to normal clicks. We implement the first tool ClickScanner to detect humanoid attacks on Android apps based on static analysis and variational AutoEncoder (VAE) with limited knowledge of fraudulent examples. We define novel features to characterize the patterns of humanoid attacks in the apps bytecode level. ClickScanner builds a data dependency graph (DDG) based on static analysis to extract these key features and form a feature vector. We then propose a classification model only trained on benign datasets to overcome the limited knowledge of humanoid attacks. We leverage ClickScanner to conduct the first large-scale measurement on app markets (i.e.,120,000 apps from Google Play and Huawei AppGallery) and reveal several unprecedented phenomena. First, even for the top-rated 20,000 apps, ClickScanner still identifies 157 apps as fraudulent, which shows the prevalence of humanoid attacks. Second, it is observed that the ad SDK-based attack (i.e., the fraudulent codes are in the third-party ad SDKs) is now a dominant attack approach. Third, the manner of attack is notably different across apps of various categories and popularities. Finally, we notice there are several existing variants of the humanoid attack. Additionally, our measurements demonstrate the proposed ClickScanner is accurate and time-efficient (i.e., the detection overhead is only 15.35% of those of existing schemes).
App builders commonly use security challenges, a form of step-up authentication, to add security to their apps. However, the ethical implications of this type of architecture has not been studied previously. In this paper, we present a large-scale me
Modern fraudsters write malicious programs to coordinate a group of accounts to commit collective fraud for illegal profits in online platforms. These programs have access to a set of finite resources - a set of IPs, devices, and accounts etc. and so
Download fraud is a prevalent threat in mobile App markets, where fraudsters manipulate the number of downloads of Apps via various cheating approaches. Purchased fake downloads can mislead recommendation and search algorithms and further lead to bad
AI-manipulated videos, commonly known as deepfakes, are an emerging problem. Recently, researchers in academia and industry have contributed several (self-created) benchmark deepfake datasets, and deepfake detection algorithms. However, little effort
In this paper, we focus on fraud detection on a signed graph with only a small set of labeled training data. We propose a novel framework that combines deep neural networks and spectral graph analysis. In particular, we use the node projection (calle