ﻻ يوجد ملخص باللغة العربية
By directly inverting several neutron star observables in the three-dimensional parameter space for the Equation of State of super-dense neutron-rich nuclear matter, we show that the lower radius limit for PSR J0740+6620 of mass $2.08pm 0.07~M_{odot}$ from Neutron Star Interior Composition Explorer (NICER)s very recent observation sets a much tighter lower boundary than previously known for nuclear symmetry energy in the density range of $(1.0sim 3.0)$ times the saturation density $rho_0$ of nuclear matter. The super-soft symmetry energy leading to the formation of proton polarons in this density region of neutron stars is clearly disfavoured by the first radius measurement for the most massive neutron star observed reliably so far.
Recently, the radius of neutron star (NS) PSR J0740+6620 was measured by NICER and an updated measurement of neutron skin thickness of ${}^{208}$Pb ($R_{rm skin}^{208}$) was reported by the PREX-II experiment. These new measurements can help us bette
In the past few years, new observations of neutron stars and neutron-star mergers have provided a wealth of data that allow one to constrain the equation of state of nuclear matter at densities above nuclear saturation density. However, most observat
In recent years our understanding of the dense matter equation of state (EOS) of neutron stars has significantly improved by analyzing multimessenger data from radio/X-ray pulsars, gravitational wave events, and from nuclear physics constraints. Here
X-ray pulse profile modeling of PSR J0740+6620, the most massive known pulsar, with data from the NICER and XMM-Newton observatories recently led to a measurement of its radius. We investigate this measurements implications for the neutron star equat
PSR J0740$+$6620 has a gravitational mass of $2.08pm 0.07~M_odot$, which is the highest reliably determined mass of any neutron star. As a result, a measurement of its radius will provide unique insight into the properties of neutron star core matter