ترغب بنشر مسار تعليمي؟ اضغط هنا

Born extra-eccentric: A broad spectrum of primordial configurations of the gas giants that match their present-day orbits

114   0   0.0 ( 0 )
 نشر من قبل Matthew Clement
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent paper we proposed that the giant planets primordial orbits may have been eccentric (~0.05), and used a suite of dynamical simulations to show outcomes of the giant planet instability that are consistent with their present-day orbits. In this follow-up investigation, we present more comprehensive simulations incorporating superior particle resolution, longer integration times, and eliminating our prior means of artificially forcing instabilities to occur at specified times by shifting a planets position in its orbit. While we find that the residual phase of planetary migration only minimally alters the the planets ultimate eccentricities, our work uncovers several intriguing outcomes in realizations where Jupiter and Saturn are born with extremely large eccentricities (~0.10 and ~0.25, respectively). In successful simulations, the planets orbits damp through interactions with the planetesimal disk prior to the instability, thus loosely replicating the initial conditions considered in our previous work. Our results therefore suggest an even wider range of plausible evolutionary pathways are capable of replicating Jupiter and Saturns modern orbital architecture.

قيم البحث

اقرأ أيضاً

An episode of dynamical instability is thought to have sculpted the orbital structure of the outer solar system. When modeling this instability, a key constraint comes from Jupiters fifth eccentric mode (quantified by its amplitude M55), which is an important driver of the solar systems secular evolution. Starting from commonly-assumed near-circular orbits, the present-day giant planets architecture lies at the limit of numerically generated systems, and M55 is rarely excited to its true value. Here we perform a dynamical analysis of a large batch of artificially triggered instabilities, and test a variety of configurations for the giant planets primordial orbits. In addition to more standard setups, and motivated by the results of modern hydrodynamical simulations of the giant planets evolution within the primordial gaseous disk, we consider the possibility that Jupiter and Saturn emerged from the nebular gas locked in 2:1 resonance with non-zero eccentricities. We show that, in such a scenario, the modern Jupiter-Saturn system represents a typical simulation outcome, and M55 is commonly matched. Furthermore, we show that Uranus and Neptunes final orbits are determined by a combination of the mass in the primordial Kuiper belt and that of an ejected ice giant.
The recent discoveries of massive planets on ultra-wide orbits of HR 8799 (Marois et al. 2008) and Fomalhaut (Kalas et al. 2008) present a new challenge for planet formation theorists. Our goal is to figure out which of three giant planet formation m echanisms--core accretion (with or without migration), scattering from the inner disk, or gravitational instability--could be responsible for Fomalhaut b, HR 8799 b, c and d, and similar planets discovered in the future. This paper presents the results of numerical experiments comparing the long-period planet formation efficiency of each possible mechanism in model A star, G star and M star disks. First, a simple core accretion simulation shows that planet cores forming beyond 35 AU cannot reach critical mass, even under the most favorable conditions one can construct. Second, a set of N-body simulations demonstrates that planet-planet scattering does not create stable, wide-orbit systems such as HR 8799. Finally, a linear stability analysis verifies previous work showing that global spiral instabilities naturally arise in high-mass disks. We conclude that massive gas giants on stable orbits with semimajor axes greater than 35 AU form by gravitational instability in the disk. We recommend that observers examine the planet detection rate as a function of stellar age, controlling for planet dimming with time. If planet detection rate is found to be independent of stellar age, it would confirm our prediction that gravitational instability is the dominant mode of producing detectable planets on wide orbits. We also predict that the occurrence ratio of long-period to short-period gas giants should be highest for M dwarfs due to the inefficiency of core accretion and the expected small fragment mass in their disks.
The mass and semimajor axis distribution of gas giants in exoplanetary systems obtained by radial velocity surveys shows that super-jupiter-mass planets are piled up at > 1 au, while jupiter/sub-jupiter-mass planets are broadly distributed from ~0.03 au to beyond 1 au. This feature has not been explained by theoretical predictions. In order to reconcile this inconsistency, we investigate evolution of gas giants with a new type II migration formula by Kanagawa et al. (2018), by comparing the migration, growth timescales of gas giants, and disk lifetime and by population synthesis simulation. While the classical migration model assumes that a gas giant opens up a clear gap in the protoplanetary disk and the planet migration tied to the disk gas accretion, recent high-resolution simulations show that the migration of gap-opening planets is decoupled from the disk gas accretion and Kanagawa et al. (2018) proposed that type II migration speed is no other than type I migration speed with the reduced disk gas surface density in the gap. We show that with this new formula, type II migration is significantly reduced for super-jupiter-mass planets, if the disk accretion is driven by the disk wind as suggested by recent MHD simulations. Population synthesis simulations show that super-jupiter-mass planets remain at > 1 au without any additional ingredient such as disk photoevaporation. Therefore, the mystery of the pile-up of gas giants at > 1 au would be theoretically solved, if the new formula is confirmed and wind-driven disk accretion dominates.
We investigate the resonant rotation of co-orbital bodies in eccentric and planar orbits. We develop a simple analytical model to study the impact of the eccentricity and orbital perturbations on the spin dynamics. This model is relevant in the entir e domain of horseshoe and tadpole orbit, for moderate eccentricities. We show that there are three different families of spin-orbit resonances, one depending on the eccentricity, one depending on the orbital libration frequency, and another depending on the pericenters dynamics. We can estimate the width and the location of the different resonant islands in the phase space, predicting which are the more likely to capture the spin of the rotating body. In some regions of the phase space the resonant islands may overlap, giving rise to chaotic rotation.
The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. We report the discovery of CoRoT-10b, a giant planet on a highly eccentric orbit (e=0.53 +/- 0.04) revolving in 13.24 days around a faint (V=15.22) metal-rich K1V star. We use CoRoT photometry, radial velocity observations taken with the HARPS spectrograph, and UVES spectra of the parent star to derive the orbital, stellar and planetary parameters. We derive a radius of the planet of 0.97 +/- 0.07 R_Jup and a mass of 2.75 +/- 0.16 M_Jup. The bulk density, rho_pl=3.70 +/- 0.83 g/cm^3, is ~2.8 that of Jupiter. The core of CoRoT-10b could contain up to 240 M_Earth of heavy elements. Moving along its eccentric orbit, the planet experiences a 10.6-fold variation in insolation. Owing to the long circularisation time, tau_circ > 7 Gyr, a resonant perturber is not required to excite and maintain the high eccentricity of CoRoT-10b.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا