ﻻ يوجد ملخص باللغة العربية
We discuss the naive lattice fermion without the issue of doublers. A local lattice massless fermion action with the chiral symmetry and hermiticity cannot avoid the doubling problem from the Nielsen-Ninomiya theorem. Here we adopt the forward finite-difference deforming the $gamma_5$-hermiticity but preserving the continuum chiral-symmetry. The lattice momentum is not hermitian without the continuum limit now. We demonstrate that there is no doubling issue from an exact solution. The propagator only has one pole in the first-order accuracy. Therefore, it is hard to know the avoiding due to the non-hermiticity. For the second-order, the lattice propagator has two poles as before but does not suffer from the doubling problem. Hence separating the forward derivative from the backward one evades the doublers under the field theory limit. Simultaneously, it is equivalent to breaking the hermiticity. In the end, we discuss the topological charge and also demonstrate the numerical implementation of the Hybrid Monte Carlo.
We propose a new lattice superfield formalism in momentum representation which accommodates species doublers of the lattice fermions and their bosonic counterparts as super multiplets. We explicitly show that one dimensional $N=2$ model with interact
We study a lattice field theory model containing two flavors of massless staggered fermions with an onsite four-fermion interaction. The model contains a $SU(4)$ symmetry which forbids non-zero fermion bilinear mass terms, due to which there is a mas
We investigate the Kondo effect with Wilson fermions. This is based on a mean-field approach for the chiral Gross-Neveu model including four-point interactions between a light Wilson fermion and a heavy fermion. For massless Wilson fermions, we demon
A systematic analysis of the structure of single-baryon correlation functions calculated with lattice QCD is performed, with a particular focus on characterizing the structure of the noise associated with quantum fluctuations. The signal-to-noise pro
As a potential window on transitions out of the ergodic, many-body-delocalized phase, we study the dephasing of weakly disordered, quasi-one-dimensional fermion systems due to a diffusive, non-Markovian noise bath. Such a bath is self-generated by th