ﻻ يوجد ملخص باللغة العربية
Tunneling is a fundamental quantum process with no classical equivalent, which can compete with Coulomb interactions to give rise to complex phenomena. Phosphorus dopants in silicon can be placed with atomic precision to address the different regimes arising from this competition. However, they exploit wavefunctions relying on crystal band symmetries, which tunneling interactions are inherently sensitive to. Here we directly image lattice-aperiodic valley interference between coupled atoms in silicon using scanning tunneling microscopy. Our atomistic analysis unveils the role of envelope anisotropy, valley interference and dopant placement on the Heisenberg spin exchange interaction. We find that the exchange can become immune to valley interference by engineering in-plane dopant placement along specific crystallographic directions. A vacuum-like behaviour is recovered, where the exchange is maximised to the overlap between the donor orbitals, and pair-to-pair variations limited to a factor of less than 10 considering the accuracy in dopant positioning. This robustness remains over a large range of distances, from the strongly Coulomb interacting regime relevant for high-fidelity quantum computation to strongly coupled donor arrays of interest for quantum simulation in silicon.
The presence of valley states is a significant obstacle to realizing quantum information technologies in Silicon quantum dots, as leakage into alternate valley states can introduce errors into the computation. We use a perturbative analytical approac
Storing and accessing information in atomic-scale magnets requires magnetic imaging techniques with single-atom resolution. Here, we show simultaneous detection of the spin-polarization and exchange force, with or without the flow of current, with a
Electron and nuclear spins of donor ensembles in isotopically pure silicon experience a vacuum-like environment, giving them extraordinary coherence. However, in contrast to a real vacuum, electrons in silicon occupy quantum superpositions of valleys
Although silicon is a promising material for quantum computation, the degeneracy of the conduction band minima (valleys) must be lifted with a splitting sufficient to ensure formation of well-defined and long-lived spin qubits. Here we demonstrate th
A single spin in a Josephson junction can reverse the flow of the supercurrent. At mesoscopic length scales, such $pi$-junctions are employed in various instances from finding the pairing symmetry to quantum computing. In Yu-Shiba-Rusinov (YSR) state