ﻻ يوجد ملخص باللغة العربية
This paper considers distributed estimation of linear systems when the state observations are corrupted with Gaussian noise of unbounded support and under possible random adversarial attacks. We consider sensors equipped with single time-scale estimators and local chi-square ($chi^2$) detectors to simultaneously opserve the states, share information, fuse the noise/attack-corrupted data locally, and detect possible anomalies in their own observations. While this scheme is applicable to a wide variety of systems associated with full-rank (invertible) matrices, we discuss it within the context of distributed inference in social networks. The proposed technique outperforms existing results in the sense that: (i) we consider Gaussian noise with no simplifying upper-bound assumption on the support; (ii) all existing $chi^2$-based techniques are centralized while our proposed technique is distributed, where the sensors textit{locally} detect attacks, with no central coordinator, using specific probabilistic thresholds; and (iii) no local-observability assumption at a sensor is made, which makes our method feasible for large-scale social networks. Moreover, we consider a Linear Matrix Inequalities (LMI) approach to design block-diagonal gain (estimator) matrices under appropriate constraints for isolating the attacks.
Observability is a fundamental concept in system inference and estimation. This paper is focused on structural observability analysis of Cartesian product networks. Cartesian product networks emerge in variety of applications including in parallel an
This paper considers the problem of simultaneous sensor fault detection, isolation, and networked estimation of linear full-rank dynamical systems. The proposed networked estimation is a variant of single time-scale protocol and is based on (i) conse
Classical distributed estimation scenarios typically assume timely and reliable exchanges of information over the sensor network. This paper, in contrast, considers single time-scale distributed estimation via a sensor network subject to transmission
We study how to design a secure observer-based distributed controller such that a group of vehicles can achieve accurate state estimates and formation control even if the measurements of a subset of vehicle sensors are compromised by a malicious atta
Connected and Automated Vehicles (CAVs) rely on the correctness of position and other vehicle kinematics information to fulfill various driving tasks such as vehicle following, lane change, and collision avoidance. However, a malicious vehicle may se