ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthesis and water permeation studies of polysulfone based composite membranes having vertically aligned CNTs

76   0   0.0 ( 0 )
 نشر من قبل Prem Goyal
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polymeric membranes, including Polysulfone (PSf) membranes, are routinely used for water treatment. It is known for quite some time that water permeability of above membranes can be improved if one incorporates carbon nanotubes (single-walled, SWCNTs or multi-walled, MWCNTs) in to the membrane and aligns them in direction of flow of water. This paper reports a method of synthesizing polymeric membranes having vertically aligned hollow CNTs embedded in them. This involves mixing of nanomagnetic particles in the dope solution and casting of membrane in presence of moderate magnetic fields. A semi-automatic membrane casting machine which allows casting of membrane in presence magnetic field was designed and fabricated. PSf nanocomposite membranes, having vertically aligned MWCNTSs, were synthesized using above machine. The effect of magnetic field and the exposure time on the water permeation of above membranes was studied. It was seen that water permeability of membrane increases by a factor of 4 when the magnetic field is increased from 0 to 1500 Gauss. There was additional 40% increase in water permeability, when the time for which film was exposed to magnetic field was increased from 5 sec. to 10 sec.



قيم البحث

اقرأ أيضاً

158 - Ning Wei , Xinsheng Peng , 2014
Water transport through graphene-derived membranes has gained much interest recently due to its promising potential in filtration and separation applications. In this work, we explore water permeation in graphene oxide membranes using atomistic simul ations, by considering flow through interlayer gallery, expanded pores such as wrinkles of interedge spaces, and pores within the sheet. We find that although flow enhancement can be established by nanoconfinement, fast water transport through pristine graphene channels is prohibited by a prominent side-pinning effect from capillaries formed between oxidized regions. We then discuss flow enhancement in situations according to several recent experiments. These understandings are finally integrated into a complete picture to understand water permeation through the layer-by-layer and porous microstructure and could guide rational design of functional membranes for energy and environmental applications.
489 - Lei Shi , Shu Wang , Tianni Lu 2019
High stability and oxygen permeability are two prominent requirements for the oxygen transport membrane candidates used as industrialization. Herein, we report several composite membranes based on xwt.%Ce0.9Pr0.1O2(CPO)-(100-x)wt.%Pr0.6Sr0.4Fe0.8Al0. 2O3(PSFAO) (x = 50, 60 and 75) prepared via a modified Pechini method. Oxygen permeability test reveals that the 60CPO-40PSFAO composition exhibits the highest oxygen permeability. The oxygen permeation flux through the optimal uncoated 0.33 mm-thickness 60CPO-40PSFAO composite can reach 1.03 mL cm-2 min-1 (over the general requirement value of 1 mL cm-2 min-1) in air/He atmosphere at 1000 {deg}C. In situ XRD performance confirms the optimal 60CPO-40PSFAO sample shows excellent stability in CO2-containing atmospheres. The 60CPO-40PSFAO membrane still exhibits simultaneously excellent oxygen permeability and phase stability after operating for over 100 h at air/CO2 condition at 1000 {deg}C, which further indicates that the 60CPO-40PSFAO composite is likely to be used for oxygen supply in CO2 capture
Battery-like supercapacitors feature high power and energy densities as well as long-term capacitance retention. The utilized capacitor electrodes are thus better to have large surface areas, high conductivity, high stability, and importantly be of b inder free. Herein, vertically aligned carbon nanofibers (CNFs) coated boron-doped diamonds (BDD) are employed as the capacitor electrodes to construct battery-like supercapacitors. Grown via a thermal chemical vapor deposition technique, these CNFs/BDD hybrid films are binder free and own porous structures, resulting in large surface areas. Meanwhile, the containment of graphene layers and copper metal catalysts inside CNFs/BDD leads to their high conductivity. Electric double layer capacitors (EDLCs) and pseudocapacitors (PCs) are then constructed in the inert electrolyte (1.0 M H2SO4 solution) and in the redox-active electrolyte (1.0 M Na2SO4 + 0.05 M Fe(CN)63-/4-), respectively. For assembled two-electrode symmetrical supercapacitor devices, the capacitances of EDLC and PC devices reach 30 and 48 mF cm-2 at 10 mV s-1, respectively. They remain constant even after 10 000 cycles. The power densities are 27.3 kW kg-1 and 25.3 kW kg-1 for EDLC and PC devices, together with their energy densities of 22.9 Wh kg-1 and 44.1 Wh kg-1, respectively. The performance of formed EDLC and PC devices is comparable to market-available batteries. Therefore, the vertically aligned CNFs/BDD hybrid film is a suitable capacitor electrode material to construct high-performance battery-like and industry-orientated supercapacitors for flexible power devices.
156 - Q. Yang , Y. Su , C. Chi 2017
Graphene oxide (GO) membranes continue to attract intense interest due to their unique molecular sieving properties combined with fast permeation rates. However, the membranes use has been limited mostly to aqueous solutions because GO membranes appe ar to be impermeable to organic solvents, a phenomenon not fully understood yet. Here, we report efficient and fast filtration of organic solutions through GO laminates containing smooth two-dimensional (2D) capillaries made from flakes with large sizes of ~ 10-20 micron. Without sacrificing their sieving characteristics, such membranes can be made exceptionally thin, down to ~ 10 nm, which translates into fast permeation of not only water but also organic solvents. We attribute the organic solvent permeation and sieving properties of ultrathin GO laminates to the presence of randomly distributed pinholes that are interconnected by short graphene channels with a width of 1 nm. With increasing the membrane thickness, the organic solvent permeation rates decay exponentially but water continues to permeate fast, in agreement with previous reports. The application potential of our ultrathin laminates for organic-solvent nanofiltration is demonstrated by showing >99.9% rejection of various organic dyes with small molecular weights dissolved in methanol. Our work significantly expands possibilities for the use of GO membranes in purification, filtration and related technologies.
Developing smart membranes that allow precise and reversible control of molecular permeation using external stimuli would be of intense interest for many areas of science: from physics and chemistry to life-sciences. In particular, electrical control of water permeation through membranes is a long-sought objective and is of crucial importance for healthcare and related areas. Currently, such adjustable membranes are limited to the modulation of wetting of the membranes and controlled ion transport, but not the controlled mass flow of water. Despite intensive theoretical work yielding conflicting results, the experimental realisation of electrically controlled water permeation has not yet been achieved. Here we report electrically controlled water permeation through micrometre-thick graphene oxide (GO) membranes. By controllable electric breakdown, conductive filaments are created in the GO membrane. The electric field concentrated around such current carrying filaments leads to controllable ionisation of water molecules in graphene capillaries, allowing precise control of water permeation: from ultrafast permeation to complete blocking. Our work opens up an avenue for developing smart membrane technologies and can revolutionize the field of artificial biological systems, tissue engineering and filtration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا