ﻻ يوجد ملخص باللغة العربية
Motivated by recent attempts to quantum simulate lattice models with continuous Abelian symmetries using discrete approximations, we define an extended-O(2) model by adding a $gamma cos(qvarphi)$ term to the ordinary O(2) model with angular values restricted to a $2pi$ interval. In the $gamma rightarrow infty$ limit, the model becomes an extended $q$-state clock model that reduces to the ordinary $q$-state clock model when $q$ is an integer and otherwise is a continuation of the clock model for noninteger $q$. By shifting the $2pi$ integration interval, the number of angles selected can change discontinuously and two cases need to be considered. What we call case $1$ has one more angle than what we call case $2$. We investigate this class of clock models in two space-time dimensions using Monte Carlo and tensor renormalization group methods. Both the specific heat and the magnetic susceptibility show a double-peak structure for fractional $q$. In case $1$, the small-$beta$ peak is associated with a crossover, and the large-$beta$ peak is associated with an Ising critical point, while both peaks are crossovers in case $2$. When $q$ is close to an integer by an amount $Delta q$ and the system is close to the small-$beta$ Berezinskii-Kosterlitz-Thouless transition, the system has a magnetic susceptibility that scales as $sim 1 / (Delta q)^{1 - 1/delta}$ with $delta$ estimates consistent with the magnetic critical exponent $delta = 15$. The crossover peak and the Ising critical point move to Berezinskii-Kosterlitz-Thouless transition points with the same power-law scaling. A phase diagram for this model in the $(beta, q)$ plane is sketched. These results are possibly relevant for configurable Rydberg-atom arrays where the interpolations among phases with discrete symmetries can be achieved by varying continuously the distances among atoms and the detuning frequency.
We connect explicitly the classical $O(2)$ model in 1+1 dimensions, a model sharing important features with $U(1)$ lattice gauge theory, to physical models potentially implementable on optical lattices and evolving at physical time. Using the tensor
We propose a minimal multi-agent model for the collective dynamics of opinion formation in the society, by modifying kinetic exchange dynamics studied in the context of income, money or wealth distributions in a society. This model has an intriguing
We calculate thermodynamic potentials and their derivatives for the three-dimensional $O(2)$ model using tensor-network methods to investigate the well-known second-order phase transition. We also consider the model at non-zero chemical potential to
We study perturbations that break gauge symmetries in lattice gauge theories. As a paradigmatic model, we consider the three-dimensional Abelian-Higgs (AH) model with an N-component scalar field and a noncompact gauge field, which is invariant under
We propose a novel lattice calculation of spontaneous chiral symmetry breaking in QED model with 2+1 dimensional fermion brane. Considering the relativistic action with gauge symmetry we rigorously carry out path integral in Monte-Carlo simulation wi