ﻻ يوجد ملخص باللغة العربية
The Gamma Factory is a proposal to back-scatter laser photons off a beam of partially-stripped ions at the LHC, producing a beam of $sim 10$ MeV to $1$ GeV photons with intensities of $10^{16}$ to $10^{18}~text{s}^{-1}$. This implies $sim 10^{23}$ to $10^{25}$ photons on target per year, many orders of magnitude greater than existing accelerator light sources and also far greater than all current and planned electron and proton fixed target experiments. We determine the Gamma Factorys discovery potential through dark Compton scattering, $gamma e to e X$, where $X$ is a new, weakly-interacting particle. For dark photons and other new gauge bosons with masses in the 1~to~100 MeV range, the Gamma Factory has the potential to discover extremely weakly-interacting particles with just a few hours of data and will probe couplings as low as $sim 10^{-9}$ with a year of running. The Gamma Factory therefore may probe couplings lower than all other terrestrial experiments and is highly complementary to astrophysical probes. We outline the requirements of an experiment to realize this potential and determine the sensitivity reach for various experimental configurations.
Long-lived particles are predicted in extensions of the Standard Model that involve relatively light but very weakly interacting sectors. In this paper we consider the possibility that some of these particles are produced in atmospheric cosmic ray sh
The theoretical motivation for exotic stable massive particles (SMPs) and the results of SMP searches at non-collider facilities are reviewed. SMPs are defined such that they would be sufficiently long-lived so as to still exist in the cosmos either
Reactor neutrino experiments provide a rich environment for the study of axionlike particles (ALPs). Using the intense photon flux produced in the nuclear reactor core, these experiments have the potential to probe ALPs with masses below 10 MeV. We e
We propose a new collider probe for axion-like particles (ALPs), and more generally for pseudo-Goldstone bosons: non-resonant searches which take advantage of the derivative nature of their interactions with Standard Model particles. ALPs can partici
Axionlike particles (ALPs) are a common prediction of theories beyond the Standard Model of particle physics that could explain the entirety of the cold dark matter. These particles could be detected through their mixing with photons in external elec