ﻻ يوجد ملخص باللغة العربية
Double strangeness $Xi^{-}$ production in Au+Au collisions at 2, 4, and 6 GeV/nucleon incident beam energies is studied with the pure hadron cascade version of a multi-phase transport model. It is found that due to larger nuclear compression, the model with the soft equation of state (EoS) gives larger yields of both single strangeness ($K^{+}$ and $Lambda+Sigma^{0}$) and double strangeness $Xi^{-}$. The sensitivity of the double strangeness $Xi^{-}$ to the EoS is evidently larger than that of $K^{+}$ or $Lambda+Sigma^{0}$ since the phase-space distribution of produced $Xi^{-}$ is more compact compared to those of the single strangeness. The larger sensitivity of the yields ratio of $Xi^{-}$ to the EoS from heavy and light systems is kept compared to that of the single strangeness. The study of $Xi^{-}$ production in relativistic heavy-ion collisions provides an alternative for the ongoing heavy-ion collision program at facilities worldwide for identifying the EoS at high densities, which is relevant to the investigation of the phase boundary and onset of deconfinement of dense nuclear matter.
Recently, observations of compact stars have provided new data of high accuracy which put strong constraints on the high-density behaviour of the equation of state of strongly interacting matter otherwise not accessible in terrestrial laboratories. T
The capabilities of the new version of the Li`ege Intra-Nuclear Cascade model (INCL++6) are presented in detail. This new version INCL is able to handle strange particles, such as kaons and the $Lambda$ particle, and the associated reactions and also
Extensions of nuclear physics to the strange sector are reviewed, covering data and models of Lambda and other hypernuclei, multi-strange matter, and anti-kaon bound states and condensation. Past achievements are highlighted, present unresolved problems discussed, and future directions outlined.
A central issue in the theory of astrophysical compact objects and heavy ion reactions at intermediate and relativistic energies is the Nuclear Equation of State (EoS). On one hand, the large and expanding set of experimental and observational data i
Using a relativistic hadron transport model, we investigate the utility of the elliptic flow excitation function as a probe for the stiffness of nuclear matter and for the onset of a possible quark-gluon-plasma (QGP) phase-transition at AGS energies