ﻻ يوجد ملخص باللغة العربية
The recently introduced theories of Topological Quantum Chemistry and Symmetry-Based Indicators (SIs) have facilitated the discovery of novel topological phases of matter and large-scale searches for materials with experimentally accessible topological properties at the Fermi energy ($E_F$). In this work, we have completed the first catalog of stable and fragile topology in all of the bands both at and away from $E_F$ in the Inorganic Crystal Structure Database (ICSD), which we have made accessible through a substantial upgrade of the Topological Materials Database. We have computed the electronic structure, topological class, and stable and fragile SIs of all bands in the 96,196 processable ICSD entries with stoichiometric chemical formulas in the presence and absence of SOC. Our calculations represent the completion of the symmetry-indicated band topology of known nonmagnetic materials, and a doubling of the number of materials accessible in previous topological material catalogs. Through our calculations, we discover the existence of repeat-topological (RTopo) materials with stable topological insulating (TI) gaps at and just below $E_F$, and supertopological (STopo) materials in which every isolated set of bands above the core shell is stable topological. Our findings recontextualize several previous experimental investigations of topological materials. We find that Ta$_2$NiSe$_5$ and Ta$_2$NiSe$_7$, respectively previously highlighted for hosting exciton-insulator and CDW phases, are 3D TIs in their normal states, and that rhombohedral bismuth and Bi$_2$Mg$_3$ are both RTopo and STopo materials. We present detailed statistics for our computations revealing that 52.65% of all materials are topological at $E_F$, roughly 2/3 of bands across all materials exhibit symmetry-indicated stable topology, and that shockingly, 87.99% of all materials contain at least one topological band.
Understanding how the arrangement of atoms and their interactions determine material behavior has been the dominant paradigm in materials science. A complementary approach is studying the organizational structure of networks of materials, defined on
A new flash (ultra-rapid) spark plasma sintering method applicable to various materials systems, regardless of their electrical resistivity, is developed. A number of powders ranging from metals to electrically insulative ceramics have been successfu
Owing to the natural compatibility with current semiconductor industry, silicon allotropes with diverse structural and electronic properties provide promising platforms for the next-generation Si-based devices. After screening 230 all-silicon crystal
Exotic phases of matter emerge from the interplay between strong electron interactions and non-trivial topology. Owing to their lack of dispersion at the single-particle level, systems harboring flat bands are excellent testbeds for strongly interact
Designing new 2D systems with tunable properties is an important subject for science and technology. Starting from graphene, we developed an algorithm to systematically generate 2D carbon crystals belonging to the family of graphdiynes (GDYs) and hav