ترغب بنشر مسار تعليمي؟ اضغط هنا

Event topology and constituent-quark scaling of elliptic flow in heavy-ion collisions at the Large Hadron Collider using a multiphase transport model

70   0   0.0 ( 0 )
 نشر من قبل Raghunath Sahoo
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Transverse spherocity is an event shape observable, which has got a unique capability to separate the events based on their geometrical shapes. In this work, we use transverse spherocity to study the identified light flavor production in heavy-ion collisions using A Multi-Phase Transport (AMPT) model. We obtain the elliptic flow coefficients for pions, kaons and protons in Pb-Pb collisions at $sqrt{s_{rm{NN}}} = 5.02$ TeV as a function of transverse spherocity and collision centrality. Also, we study the number of constituent-quark (NCQ) scaling of elliptic flow which interprets the dominance of the quark degrees of freedom at early stages of the collision. We observe a clear dependence of the elliptic flow for identified particles on transverse spherocity. It is found that the NCQ-scaling is strongly violated in events with low transverse spherocity compared to transverse spherocity-integrated events.



قيم البحث

اقرأ أيضاً

145 - R.B. Neufeld , I. Vitev 2012
Tagged jet measurements provide a promising experimental channel to quantify the similarities and differences in the mechanisms of jet production in proton-proton and nucleus-nucleus collisions. We present the first calculation of the transverse mome ntum asymmetry of Z^0/gamma^*-tagged jet events in sqrt{s}=2.76$ TeV reactions at the LHC. Our results combine the O(G_Falpha_s^2) perturbative cross sections with the radiative and collisional processes that modify parton showers in the presence of dense QCD matter. We find that a strong asymmetry is generated in central lead-lead reactions that has little sensitivity to the fluctuations of the underlying soft hadronic background. We present theoretical model predictions for its shape and magnitude.
85 - M. Alvioli 2016
We model effects of color fluctuations (CFs) in the light-cone photon wave function and for the first time make predictions for the distribution over the number of wounded nucleons $ u$ in the inelastic photon-nucleus scattering. We show that CFs lea d to a dramatic enhancement of this distribution at $ u=1$ and large $ u > 10$. We also study the implications of different scales and CFs in the photon wave function on the total transverse energy $Sigma E_T$ and other observables in inelastic $gamma A$ scattering with different triggers. Our predictions can be tested in proton-nucleus and nucleus-nucleus ultraperipheral collisions at the LHC and will help to map CFs, whose first indications have already been observed at the LHC.
Fluctuations of conserved quantities are believed to be sensitive observables to probe the signature of the QCD phase transition and critical point. It was argued recently that measuring the genuine correlation functions (CFs) could provide cleaner i nformation on possible nontrivial dynamics in heavy-ion collisions.With the AMPT (a multiphase transport) model, the centrality and energy dependence of various orders of CFs of net protons in Au + Au collisions at $sqrt{s_mathrm{NN}}$=7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV are investigated. The model results show that the number of antiprotons is important and should be taken into account in the calculation of CFs at high energy and/or in peripheral collisions. It is also found that the contribution of antiprotons is more important for higher order correlations than for lower ones. The CFs of antiprotons and mixed correlations play roles comparable to those of protons at high energies. Finally, we make comparisons between the model calculation and experimental data measured in the STAR experiment at the BNL Relativistic Heavy Ion Collider.
89 - G. Eyyubova 2009
Formation and evolution of the elliptic flow pattern in Pb+Pb collisions at sqrt{s}=5.5 ATeV and in Au+Au collisions at sqrt{s}=200 AGeV are analyzed for different hadron species within the framework of HYDJET++ Monte-Carlo model. The model contains both hydrodynamic state and jets, thus allowing for a study of the interplay between the soft and hard processes. It is found that jets are terminating the rise of the elliptic flow with increasing transverse momentum. Since jets are more influential at LHC compared to RHIC, the elliptic flow at LHC should be weaker than that at RHIC. The influence of resonance decays on particle elliptic flow is investigated also. These final state interactions enhance the low-p_T part of the v_2 of pions and light baryons, and work towards the fulfilment of idealized constituent quark scaling.
Hadronic resonances, having very short lifetime, like $rm{K}^{*0}$, can act as useful probes to understand and estimate lifetime of hadronic phase in ultra-relativistic proton-proton, p--Pb and heavy-ion collisions. Resonances with relatively longer lifetime, like $phi$ meson, can serve as a tool to locate the QGP phase boundary. We estimate a lower limit of hadronic phase lifetime in Cu--Cu and Au--Au collisions at RHIC, and in pp, p--Pb and Pb--Pb collisions at different LHC collision energies. Also, we obtain the effective temperature of $phi$ meson using Boltzmann-Gibbs Blast-Wave function, which gives an insight to locate the QGP phase boundary. We observe that the hadronic phase lifetime strongly depends on final state charged-particle multiplicity, whereas the QGP phase and hence the QCD phase boundary shows a very weak multiplicity dependence. This suggests that the hadronisation from a QGP state starts at a similar temperature irrespective of charged-particle multiplicity, collision system and collision energy, while the endurance of hadronic phase is strongly dependent on final state charge-particle multiplicity, system size and collision energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا