ﻻ يوجد ملخص باللغة العربية
Sixth-Generation (6G)-based Internet of Everything applications (e.g. autonomous driving cars) have witnessed a remarkable interest. Autonomous driving cars using federated learning (FL) has the ability to enable different smart services. Although FL implements distributed machine learning model training without the requirement to move the data of devices to a centralized server, it its own implementation challenges such as robustness, centralized server security, communication resources constraints, and privacy leakage due to the capability of a malicious aggregation server to infer sensitive information of end-devices. To address the aforementioned limitations, a dispersed federated learning (DFL) framework for autonomous driving cars is proposed to offer robust, communication resource-efficient, and privacy-aware learning. A mixed-integer non-linear (MINLP) optimization problem is formulated to jointly minimize the loss in federated learning model accuracy due to packet errors and transmission latency. Due to the NP-hard and non-convex nature of the formulated MINLP problem, we propose the Block Successive Upper-bound Minimization (BSUM) based solution. Furthermore, the performance comparison of the proposed scheme with three baseline schemes has been carried out. Extensive numerical results are provided to show the validity of the proposed BSUM-based scheme.
6G technology targets to revolutionize the mobility industry by revamping the role of wireless connections. In this article, we draw out our vision on an intelligent, cooperative, and sustainable mobility environment of the future, discussing how 6G
Due to the advanced capabilities of the Internet of Vehicles (IoV) components such as vehicles, Roadside Units (RSUs) and smart devices as well as the increasing amount of data generated, Federated Learning (FL) becomes a promising tool given that it
In this paper, we propose a novel energy-efficient framework for an electric vehicle (EV) network using a contract theoretic-based economic model to maximize the profits of charging stations (CSs) and improve the social welfare of the network. Specif
Reinforcement learning (RL) is widely used in autonomous driving tasks and training RL models typically involves in a multi-step process: pre-training RL models on simulators, uploading the pre-trained model to real-life robots, and fine-tuning the w
In a level-5 autonomous driving system, the autonomous driving vehicles (AVs) are expected to sense the surroundings via analyzing a large amount of data captured by a variety of onboard sensors in near-real-time. As a result, enormous computing cost