ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging Seebeck drift of excitons and trions in MoSe2 monolayers

227   0   0.0 ( 0 )
 نشر من قبل Fabian Cadiz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hyperspectral imaging at cryogenic temperatures is used to investigate exciton and trion propagation in MoSe$_2$ monolayers encapsulated with hexagonal boron nitride (hBN). Under a tightly focused, continuous-wave laser excitation, the spatial distribution of neutral excitons and charged trions strongly differ at high excitation densities. Remarkably, in this regime the trion distribution develops a halo shape, similar to that previously observed in WS2 monolayers at room temperature and under pulsed excitation. In contrast, the exciton distribution only presents a moderate broadening without the appereance of a halo. Spatially and spectrally resolved luminescence spectra reveal the buildup of a significant temperature gradient at high excitation power, that is attributed to the energy relaxation of photoinduced hot carriers. We show, via a numerical resolution of the transport equations for excitons and trions, that the halo can be interpreted as thermal drift of trions due to a Seebeck term in the particle current. The model shows that the difference between trion and exciton profiles is simply understood in terms of the very different lifetimes of these two quasiparticles.



قيم البحث

اقرأ أيضاً

Excitons with binding energies of a few hundreds of meV control the optical properties of transition metal dichalcogenide monolayers. Knowledge of the fine structure of these excitons is therefore essential to understand the optoelectronic properties of these 2D materials. Here we measure the exciton fine structure of MoS2 and MoSe2 monolayers encapsulated in boron nitride by magneto-photoluminescence spectroscopy in magnetic fields up to 30 T. The experiments performed in transverse magnetic field reveal a brightening of the spin-forbidden dark excitons in MoS2 monolayer: we find that the dark excitons appear at 14 meV below the bright ones. Measurements performed in tilted magnetic field provide a conceivable description of the neutral exciton fine structure. The experimental results are in agreement with a model taking into account the effect of the exchange interaction on both the bright and dark exciton states as well as the interaction with the magnetic field.
131 - S. Shree , M. Semina , C. Robert 2018
We study experimentally and theoretically the exciton-phonon interaction in MoSe2 monolayers encapsulated in hexagonal BN, which has an important impact on both optical absorption and emission processes. The exciton transition linewidth down to 1 meV at low temperatures makes it possible to observe high energy tails in absorption and emission extending over several meV, not masked by inhomogeneous broadening. We develop an analytical theory of the exciton-phonon interaction accounting for the deformation potential induced by the longitudinal acoustic phonons, which plays an important role in exciton formation. The theory allows fitting absorption and emission spectra and permits estimating the deformation potential in MoSe2 monolayers. We underline the reasons why exciton-phonon coupling is much stronger in two-dimensional transition metal dichalcodenides as compared to conventional quantum well structures. The importance of exciton-phonon interactions is further highlighted by the observation of a multitude of Raman features in the photoluminescence excitation experiments.
The effect of an external in-plane electric field on neutral and charged exciton states in two-dimensional (2D) materials is theoretically investigated. These states are argued to be strongly bound, so that electron-hole dissociation is not observed up to high electric field intensities. Trions in the anisotropic case of monolayer phosphorene are demonstrated to especially robust under electric fields, so that fields as high as 100 kV/cm yield no significant effect on the trion binding energy or probability density distribution. Polarizabilities of excitons are obtained from the parabolicity of numerically calculated Stark shifts. For trions, a fourth order Stark shift is observed, which enables the experimental verification of hyperpolarizability in 2D materials, as observed in the highly excited states of the Rydberg series of atoms and ions.
Interlayer excitons are observed coexisting with intralayer excitons in bi-layer, few-layer, and bulk MoSe2 single crystals by confocal reflection contrast spectroscopy. Quantitative analysis using the Dirac-Bloch-Equations provides unambiguous state assignment of all the measured resonances. The interlayer excitons in bilayer MoSe2 have a large binding energy of 153 meV, narrow linewidth of 20 meV, and their spectral weight is comparable to the commonly studied higher-order intralayer excitons. At the same time, the interlayer excitons are characterized by distinct transition energies and permanent dipole moments providing a promising high temperature and optically accessible platform for dipolar exciton physics.
We present a theoretical description of excitons and positively and negatively charged trions in giant CdSe/CdS core-shell nanocrystals (NCs). The developed theory provides the parameters describing the fine structure of excitons in CdSe/CdS core/thi ck shell NCs as a function of the CdSe/CdS conduction band offset and the CdSe core radius. We have also developed a general theory describing the fine structure of positively charged trions created in semiconductor NCs with a degenerate valence band. The calculations take into account the complex structure of the CdSe valence band and inter-particle Coulomb and exchange interaction. Presented in this paper are the CdSe core size and CdSe/CdS conduction band offset dependences (i) of the positively charged trion fine structure, (ii) of the binding energy of the negatively charged trion, and (iii) of the radiative decay time for excitons and trions. The results of theoretical calculations are in qualitative agreement with available experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا