ترغب بنشر مسار تعليمي؟ اضغط هنا

Any Axion Insulator Must be a Bulk Three-Dimensional Topological Insulator

91   0   0.0 ( 0 )
 نشر من قبل Kajetan M. Fijalkowski
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent attempts to observe axion electrodynamics, much effort has focused on trilayer heterostructures of magnetic topological insulators, and in particular on the examination of a so-called zero Hall plateau, which has misguidedly been overstated as direct evidence of an axion insulator state. We investigate the general notion of axion insulators, which by definition must contain a nontrivial volume to host the axion term. We conduct a detailed magneto-transport analysis of Chern insulators comprised of a single magnetic topological insulator layer of varying thickness as well as trilayer structures, for samples optimized to yield a perfectly quantized anomalous Hall effect. Our analysis gives evidence for a topological magneto-electric effect quantized in units of e$^2$/2h, allowing us to identify signatures of axion electrodynamics. Our observations may provide direct experimental access to electrodynamic properties of the universe beyond the traditional Maxwell equations, and challenge the hitherto proclaimed exclusive link between the observation of a zero Hall plateau and an axion insulator.



قيم البحث

اقرأ أيضاً

We use the bulk Hamiltonian for a three-dimensional topological insulator such as $rm Bi_2 Se_3$ to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Ham iltonians (which are derived from the bulk Hamiltonian) and numerical methods based on a lattice discretization of the bulk Hamiltonian. We find that the application of a potential along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering across the edge is studied as a function of the edge potential. We show that a magnetic field in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states.
Topological insulators are expected to be a promising platform for novel quantum phenomena, whose experimental realizations require sophisticated devices. In this Technical Review, we discuss four topics of particular interest for TI devices: topolog ical superconductivity, quantum anomalous Hall insulator as a platform for exotic phenomena, spintronic functionalities, and topological mesoscopic physics. We also discuss the present status and technical challenges in TI device fabrications to address new physics.
From the analysis of the cyclotron resonance, we experimentally obtain the band structure of the three-dimensional topological insulator based on a HgTe thin film. Top gating was used to shift the Fermi level in the film, allowing us to detect separa te resonance modes corresponding to the surface states at two opposite film interfaces, the bulk conduction band, and the valence band. The experimental band structure agrees reasonably well with the predictions of the $mathbf{kcdot p}$ model. Due to the strong hybridization of the surface and bulk bands, the dispersion of the surface states is close to parabolic in the broad range of the electron energies.
As personal electronic devices increasingly rely on cloud computing for energy-intensive calculations, the power consumption associated with the information revolution is rapidly becoming an important environmental issue. Several approaches have been proposed to construct electronic devices with low energy consumption. Among these, the low-dissipation surface states of topological insulators (TIs) are widely employed. To develop TI-based devices, a key factor is the maximum temperature at which the Dirac surface states dominate the transport behavior. Here, we employ Shubnikov-de Haas oscillations (SdH) as a means to study the surface state survival temperature in a high quality vanadium doped Bi1.08Sn0.02Sb0.9Te2S single crystal system. The temperature and angle dependence of the SdH show that: 1) crystals with different vanadium (V) doping levels are insulating in the 3-300 K region, 2) the SdH oscillations show two-dimensional behavior, indicating that the oscillations arise from the pure surface states; and 3) at 50 K, the V0.04 single crystals (Vx:Bi1.08-xSn0.02Sb0.9Te2S, where x = 0.04) still show clear sign of SdH oscillations, which demonstrate that the surface dominant transport behavior can survive above 50 K. The robust surface states in our V doped single crystal systems provide an ideal platform to study the Dirac fermions and their interaction with other materials above 50 K.
158 - Su-Yang Xu , Y. Xia , L. A. Wray 2011
The recently discovered three dimensional or bulk topological insulators are expected to exhibit exotic quantum phenomena. It is believed that a trivial insulator can be twisted into a topological state by modulating the spin-orbit interaction or the crystal lattice via odd number of band
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا