ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized Few-Shot Object Detection without Forgetting

214   0   0.0 ( 0 )
 نشر من قبل Zhibo Fan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently few-shot object detection is widely adopted to deal with data-limited situations. While most previous works merely focus on the performance on few-shot categories, we claim that detecting all classes is crucial as test samples may contain any instances in realistic applications, which requires the few-shot detector to learn new concepts without forgetting. Through analysis on transfer learning based methods, some neglected but beneficial properties are utilized to design a simple yet effective few-shot detector, Retentive R-CNN. It consists of Bias-Balanced RPN to debias the pretrained RPN and Re-detector to find few-shot class objects without forgetting previous knowledge. Extensive experiments on few-shot detection benchmarks show that Retentive R-CNN significantly outperforms state-of-the-art methods on overall performance among all settings as it can achieve competitive results on few-shot classes and does not degrade the base class performance at all. Our approach has demonstrated that the long desired never-forgetting learner is available in object detection.



قيم البحث

اقرأ أيضاً

Both generalized and incremental few-shot learning have to deal with three major challenges: learning novel classes from only few samples per class, preventing catastrophic forgetting of base classes, and classifier calibration across novel and base classes. In this work we propose a three-stage framework that allows to explicitly and effectively address these challenges. While the first phase learns base classes with many samples, the second phase learns a calibrated classifier for novel classes from few samples while also preventing catastrophic forgetting. In the final phase, calibration is achieved across all classes. We evaluate the proposed framework on four challenging benchmark datasets for image and video few-shot classification and obtain state-of-the-art results for both generalized and incremental few shot learning.
We introduce Few-Shot Video Object Detection (FSVOD) with three important contributions: 1) a large-scale video dataset FSVOD-500 comprising of 500 classes with class-balanced videos in each category for few-shot learning; 2) a novel Tube Proposal Ne twork (TPN) to generate high-quality video tube proposals to aggregate feature representation for the target video object; 3) a strategically improved Temporal Matching Network (TMN+) to match representative query tube features and supports with better discriminative ability. Our TPN and TMN+ are jointly and end-to-end trained. Extensive experiments demonstrate that our method produces significantly better detection results on two few-shot video object detection datasets compared to image-based methods and other naive video-based extensions. Codes and datasets will be released at https://github.com/fanq15/FewX.
Learning to detect novel objects from few annotated examples is of great practical importance. A particularly challenging yet common regime occurs when there are extremely limited examples (less than three). One critical factor in improving few-shot detection is to address the lack of variation in training data. We propose to build a better model of variation for novel classes by transferring the shared within-class variation from base classes. To this end, we introduce a hallucinator network that learns to generate additional, useful training examples in the region of interest (RoI) feature space, and incorporate it into a modern object detection model. Our approach yields significant performance improvements on two state-of-the-art few-shot detectors with different proposal generation procedures. In particular, we achieve new state of the art in the extremely-few-shot regime on the challenging COCO benchmark.
Conventional detection networks usually need abundant labeled training samples, while humans can learn new concepts incrementally with just a few examples. This paper focuses on a more challenging but realistic class-incremental few-shot object detec tion problem (iFSD). It aims to incrementally transfer the model for novel objects from only a few annotated samples without catastrophically forgetting the previously learned ones. To tackle this problem, we propose a novel method LEAST, which can transfer with Less forgetting, fEwer training resources, And Stronger Transfer capability. Specifically, we first present the transfer strategy to reduce unnecessary weight adaptation and improve the transfer capability for iFSD. On this basis, we then integrate the knowledge distillation technique using a less resource-consuming approach to alleviate forgetting and propose a novel clustering-based exemplar selection process to preserve more discriminative features previously learned. Being a generic and effective method, LEAST can largely improve the iFSD performance on various benchmarks.
Learning to detect an object in an image from very few training examples - few-shot object detection - is challenging, because the classifier that sees proposal boxes has very little training data. A particularly challenging training regime occurs wh en there are one or two training examples. In this case, if the region proposal network (RPN) misses even one high intersection-over-union (IOU) training box, the classifiers model of how object appearance varies can be severely impacted. We use multiple distinct yet cooperating RPNs. Our RPNs are trained to be different, but not too different; doing so yields significant performance improvements over state of the art for COCO and PASCAL VOC in the very few-shot setting. This effect appears to be independent of the choice of classifier or dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا