ترغب بنشر مسار تعليمي؟ اضغط هنا

Generic stabilizers for simple algebraic groups

272   0   0.0 ( 0 )
 نشر من قبل Skip Garibaldi
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove a myriad of results related to the stabilizer in an algebraic group $G$ of a generic vector in a representation $V$ of $G$ over an algebraically closed field $k$. Our results are on the level of group schemes, which carries more information than considering both the Lie algebra of $G$ and the group $G(k)$ of $k$-points. For $G$ simple and $V$ faithful and irreducible, we prove the existence of a stabilizer in general position, sometimes called a principal orbit type. We determine those $G$ and $V$ for which the stabilizer in general position is smooth, or $dim V/G < dim G$, or there is a $v in V$ whose stabilizer in $G$ is trivial.



قيم البحث

اقرأ أيضاً

We prove that the closure of every Jordan class J in a semisimple simply connected complex group G at a point x with Jordan decomposition x = rv is smoothly equivalent to the union of closures of those Jordan classes in the centraliser of r that are contained in J and contain x in their closure. For x unipotent we also show that the closure of J around x is smoothly equivalent to the closure of a Jordan class in Lie(G) around exp^{-1}x. For G simple we apply these results in order to determine a (non-exhaustive) list of smooth sheets in G, the complete list of regular Jordan classes whose closure is normal and Cohen-Macaulay, and to prove that all sheets and Lusztigs strata in SL(n,C) are smooth.
We classify the irreducible representations of smooth, connected affine algebraic groups over a field, by tackling the case of pseudo-reductive groups. We reduce the problem of calculating the dimension for pseudo-split pseudo-reductive groups to the split reductive case and the pseudo-split pseudo-reductive commutative case. Moreover, we give the first results on the latter, including a rather complete description of the rank one case.
157 - Christoph Lienau 2010
For a real linear algebraic group G let A(G) be the algebra of analytic vectors for the left regular representation of G on the space of superexponentially decreasing functions. We present an explicit Dirac sequence in A(G). Since A(G) acts on E for every Frechet-representation (pi,E) of moderate growth, this yields an elementary proof of a result of Nelson that the space of analytic vectors is dense in E.
We prove that an analogue of Jordans theorem on finite subgroups of general linear groups holds for the groups of biregular automorphisms of algebraic surfaces. This gives a positive answer to a question of Vladimir L. Popov.
We prove an analogue of the celebrated Hall-Higman theorem, which gives a lower bound for the degree of the minimal polynomial of any semisimple element of prime power order $p^{a}$ of a finite classical group in any nontrivial irreducible cross char acteristic representation. With a few explicit exceptions, this degree is at least $p^{a-1}(p-1)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا