ترغب بنشر مسار تعليمي؟ اضغط هنا

The Airborne Infrared Spectrometer: Development, Characterization, and the 21 August 2017 Eclipse Observation

81   0   0.0 ( 0 )
 نشر من قبل Jenna Samra
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On August 21, 2017, the Airborne Infrared Spectrometer (AIR-Spec) observed the total solar eclipse at an altitude of 14 km from aboard the NSF/NCAR Gulfstream V research aircraft. The instrument successfully observed the five coronal emission lines that it was designed to measure: Si X 1.431 $mu$m, S XI 1.921 $mu$m, Fe IX 2.853 $mu$m, Mg VIII 3.028 $mu$m, and Si IX 3.935 $mu$m. Characterizing these magnetically sensitive emission lines is an important first step in designing future instruments to monitor the coronal magnetic field, which drives space weather events as well as coronal heating, structure, and dynamics. The AIR-Spec instrument includes an image stabilization system, feed telescope, grating spectrometer, and slit-jaw imager. This paper details the instrument design, optical alignment method, image processing, and data calibration approach. The eclipse observations are described and the available data are summarized.

قيم البحث

اقرأ أيضاً

We report on a search for short-period intensity variations in the green-line FeXIV 530.3 nm emission from the solar corona during the 21 August 2017 total eclipse viewed from Idaho in the United States. Our experiment was performed with a much more sensitive detection system, and with better spatial resolution, than on previous occasions (1999 and 2001 eclipses), allowing fine details of quiet coronal loops and an active-region loop system to be seen. A guided 200-mm-aperture Schmidt-Cassegrain telescope was used with a state-of-the-art CCD camera having 16-bit intensity discrimination and a field-of-view 0.43 degree x 0.43 degree that encompassed approximately one third of the visible corona. The camera pixel size was 1.55 arcseconds, while the seeing during the eclipse enabled features of approx. 2 arcseconds (1450 km on the Sun) to be resolved. A total of 429 images were recorded during a 122.9 second portion of the totality at a frame rate of 3.49 images per second. In the analysis, we searched particularly for short-period intensity oscillations and travelling waves, since theory predicts fast-mode magneto-hydrodynamic (MHD) waves with short periods may be important in quiet coronal and active-region heating. Allowing first for various instrumental and photometric effects, we used a wavelet technique to search for periodicities in some 404 000 pixels in the frequency range 0.5-1.6 Hz (periods: 2 second to 0.6 second). We also searched for travelling waves along some 65 coronal structures. However, we found no statistically significant evidence in either. This negative result considerably refines the limit that we obtained from our previous analyses, and it indicates that future searches for short-period coronal waves may be better directed towards Doppler shifts as well as intensity oscillations.
We report the results of polarimetric observations of the total solar eclipse of 21 August 2017 from Rexburg, Idaho (USA). We use three synchronized DSLR cameras with polarization filters oriented at 0{deg}, 60{deg}, and 120{deg} to provide high-dyna mic-range RGB polarization images of the corona and surrounding sky. We measure tangential coronal polarization and vertical sky polarization, both as expected. These observations provide detailed detections of polarization neutral points above and below the eclipsed Sun where the coronal polarization is canceled by the sky polarization. We name these special polarization neutral points after Minnaert and Van de Hulst.
The Airborne Infrared Spectrometer (AIR-Spec) was commissioned during the 2017 total solar eclipse, when it observed five infrared coronal emission lines from the Gulfstream V High-performance Instrumented Airborne Platform for Environmental Research (GV HIAPER), a research jet owned by the National Science Foundation (NSF) and operated by the National Center for Atmospheric Research (NCAR). The second AIR-Spec research flight took place during the July 2, 2019 total solar eclipse across the south Pacific. The 2019 eclipse flight resulted in seven minutes of observations, during which the instrument measured all four of its target emission lines: S XI 1.393 $mu$m, Si X 1.431 $mu$m, S XI 1.921 $mu$m, and Fe IX 2.853 $mu$m. The 1.393 $mu$m line, half of a density-sensitive S XI line pair, was detected for the first time. The 2017 AIR-Spec detection of Fe IX was confirmed and the first observations were made of the Fe IX intensity as a function of solar radius. Observations of S XI and Si X were used to estimate the temperature and density above the east and west limbs, the subject of a future paper. Atmospheric absorption was significant in the 2019 data, and atmospheric modeling was required to extract accurate line intensities. Telluric absorption features were used to calibrate the wavelength mapping, instrumental broadening, and throughput of the instrument. AIR-Spec underwent significant upgrades in preparation for the 2019 eclipse flight. The thermal background was reduced by a factor of 30, providing a 5.5x improvement in signal-to-noise ratio, and the pointing stability was improved by a factor of five to $<$10 arcsec RMS after image co-alignment. In addition, two imaging artifacts were identified and resolved, making the 2019 data easier to interpret and improving the spectral resolution by up to 50%.
Far-infrared astronomy has advanced rapidly since its inception in the late 1950s, driven by a maturing technology base and an expanding community of researchers. This advancement has shown that observations at far-infrared wavelengths are important in nearly all areas of astrophysics, from the search for habitable planets and the origin of life, to the earliest stages of galaxy assembly in the first few hundred million years of cosmic history. The combination of a still developing portfolio of technologies, particularly in the field of detectors, and a widening ensemble of platforms within which these technologies can be deployed, means that far-infrared astronomy holds the potential for paradigm-shifting advances over the next decade. In this review, we examine current and future far-infrared observing platforms, including ground-based, sub-orbital, and space-based facilities, and discuss the technology development pathways that will enable and enhance these platforms to best address the challenges facing far-infrared astronomy in the 21st century.
NASAs WB-57 High Altitude Research Program provides a deployable, mobile, stratospheric platform for scientific research. Airborne platforms are of particular value for making coronal observations during total solar eclipses because of their ability both to follow the Moons shadow and to get above most of the atmospheric airmass that can interfere with astronomical observations. We used the 2017 Aug 21 eclipse as a pathfinding mission for high-altitude airborne solar astronomy, using the existing high-speed visible-light and near-/mid-wave infrared imaging suite mounted in the WB-57 nose cone. In this paper, we describe the aircraft, the instrument, and the 2017 mission; operations and data acquisition; and preliminary analysis of data quality from the existing instrument suite. We describe benefits and technical limitations of this platform for solar and other astronomical observations. We present a preliminary analysis of the visible-light data quality and discuss the limiting factors that must be overcome with future instrumentation. We conclude with a discussion of lessons learned from this pathfinding mission and prospects for future research at upcoming eclipses, as well as an evaluation of the capabilities of the WB-57 platform for future solar astronomy and general astronomical observation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا