ترغب بنشر مسار تعليمي؟ اضغط هنا

The frequency by mass of Galactic carbon stars inferred from Gaia measurements of star cluster members

86   0   0.0 ( 0 )
 نشر من قبل Guy Worthey
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the frequency of occurrence of Galactic carbon stars as a function of progenitor mass using Gaia data. Small number statistics limit fidelity, but C star frequency agrees with that observed in the Magellanic Clouds (MCs) down to $m approx1.67$ M$_odot$. At $m approx 1.38$ M$_odot$, the frequency rises by a factor of three even though the frequency appears to drop to zero for the MCs. In fact this is due to a lack of clusters at the key age range in the MCs. At $m approx 1.24$ M$_odot$ and below, no C stars are observed, corresponding to ages older than 4 Gyr. Within uncertainties, C~star frequency in M 31 is consistent with that of the Galaxy and the MCs. We find an ambiguous C-star candidate at $sim$7 M$_odot$.

قيم البحث

اقرأ أيضاً

273 - Daisuke Kawata 2020
Using a numerical simulation of an isolated barred disc galaxy, we first demonstrate that the resonances of the inner bar structure induce more prominent features in the action space distribution for the kinematically hotter stars, which are less sen sitive to the local perturbation, such as the transient spiral arms. Then, we analyse the action distribution for the kinematically hotter stars selected from the Gaia EDR3 data as the stars with higher values of radial and vertical actions. We find several resonance features, including two new features, in the angular momentum distribution similar to what are seen in our numerical simulations. We show that the bar pattern speeds of about $Omega_{rm bar}sim34$~km~s$^{-1}$~kpc$^{-1}$ and 42~km~s$^{-1}$~kpc$^{-1}$ explain all these features equally well. The resonance features we find correspond to the inner 4:1, co-rotation, outer 4:1, outer Lindblad and outer 4:3 (co-rotation, outer 4:1, outer Lindblad, outer 4:3 and outer 1:1) resonances, when $Omega_{rm bar}sim34$ (42) km~s$^{-1}$~kpc$^{-1}$ is assumed.
We present elemental abundance analysis of high-resolution spectra for five giant stars, deriving Fe, Mg, Al, C, N, O, Si and Ce abundances, and spatially located within the innermost regions of the bulge globular cluster NGC 6522, based on H-band sp ectra taken with the multi-object APOGEE-north spectrograph from the SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. Of the five cluster candidates, two previously unremarked stars are confirmed to have second-generation (SG) abundance patterns, with the basic pattern of depletion in C and Mg simultaneous with enrichment in N and Al as seen in other SG globular cluster populations at similar metallicity. } In agreement with the most recent optical studies, the NGC 6522 stars analyzed exhibit (when available) only mild overabundances of the s-process element Ce, contradicting the idea of the NGC 6522 stars being formed from gas enriched by spinstars and indicating that other stellar sources such as massive AGB stars could be the primary intra-cluster medium polluters. The peculiar abundance signature of SG stars have been observed in our data, confirming the presence of multiple generations of stars in NGC 6522.
Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized po rtion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig-Haro objects known within the inner Orion Nebula. We find that the best-known Herbig-Haro shocks originate from a relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks are the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blue shifted because the redshifted outflows pass into the optically thick Photon Dominated Region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD data base.
78 - A. Monna , S. Seitz , A. Zitrin 2014
We use velocity dispersion measurements of 21 individual cluster members in the core of Abell 383, obtained with MMT Hectospec, to separate the galaxy and the smooth dark halo (DH) lensing contributions. While lensing usually constrains the overall, projected mass density, the innovative use of velocity dispersion measurements as a proxy for masses of individual cluster members breaks inherent degeneracies and allows us to (a) refine the constraints on single galaxy masses and on the galaxy mass-to-light scaling relation and, as a result, (b) refine the constraints on the DM-only map, a high-end goal of lens modelling. The knowledge of cluster member velocity dispersions improves the fit by 17% in terms of the image reproduction $chi^2$, or 20% in terms of the rms. The constraints on the mass parameters improve by ~10% for the DH, while for the galaxy component, they are refined correspondingly by ~50%, including the galaxy halo truncation radius. For an L$^*$ galaxy with M$^*_B$=-20.96, for example, we obtain best fitting truncation radius r$^*_{tr}=20.5^{+9.6}_{-6.7}$ kpc and velocity dispersion $sigma^*=324pm17 km/s$. Moreover, by performing the surface brightness reconstruction of the southern giant arc, we improve the constraints on r$_{tr}$ of two nearby cluster members, which have measured velocity dispersions, by more than ~30%. We estimate the stripped mass for these two galaxies, getting results that are consistent with numerical simulations. In the future, we plan to apply this analysis to other galaxy clusters for which velocity dispersions of member galaxies are available.
76 - T. Bensby , A. Gould , M. Asplund 2021
CONTEXT: [ABRIDGED]. For the Milky Way bulge, there are currently essentially no measurements of carbon in un-evolved stars, hampering our abilities to properly compare Galactic chemical evolution models to observational data for this still enigmatic stellar population. AIMS: We aim to determine carbon abundances for our sample of 91 microlensed bulge dwarf and subgiant stars. Together with new determinations for oxygen this forms the first statistically significant sample of bulge stars that have C and O abundances measured, and for which the C abundances have not been altered by the nuclear burning processes internal to the stars. METHODS: The analysis is based on high-resolution spectra for a sample of 91 dwarf and subgiant stars that were obtained during microlensing events when the brightnesses of the stars were highly magnified. Carbon abundances were determined through spectral line synthesis of five CI lines around 9100 A, and oxygen abundances using the three OI lines at about 7770 A. [ABRIDGED] RESULTS: Carbon abundances was possible to determine for 70 of the 91 stars in the sample and oxygen abundances for 88 of the 91 stars in the sample. The [C/Fe] ratio evolves essentially in lockstep with [Fe/H], centred around solar values at all [Fe/H]. The [O/Fe]-[Fe/H] trend has an appearance very similar to that observed for other alpha-elements in the bulge, [ABRIDGED]. When dividing the bulge sample into two sub-groups, one younger than 8 Gyr and one older than 8 Gyr, the stars in the two groups follow exactly the elemental abundance trends defined by the solar neighbourhood thin and thick disks, respectively. Comparisons with recent models of Galactic chemical evolution in the [C/O]-[O/H] plane shows that the models that best match the data are the ones that have been calculated with the Galactic thin and thick disks in mind. [ABRIDGED] ....
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا