ﻻ يوجد ملخص باللغة العربية
We calculate the $Lambda_b to Lambda_c^*(2595) l u$ and $Lambda_b to Lambda_c^*(2625) l u$ form factors and decay rates for all possible $b to c l bar u$ four-Fermi interactions in and beyond the Standard Model (SM), including nonzero charged lepton masses and terms up to order $mathcal{O}(alpha_s, 1/m_{c,b})$ in the heavy quark effective theory (HQET). We point out a subtlety involving the overcompleteness of the representation of the spin-parity $1/2^+ to 3/2^-$ antisymmetric tensor form factors, relevant also to other higher excited-state transitions, and present a general method for the counting of the physical form factors for any hadronic transition matrix element and their matching onto HQET. We perform a preliminary fit of a simple HQET-based parametrization of the $Lambda_b to Lambda_c^*$ form factors at $mathcal{O}(alpha_s, 1/m_{c,b})$ to an existing quark model, providing preliminary predictions for the lepton universality ratios $R(Lambda_c^*)$ beyond the SM. Finally, we examine the putative incompatibility of recent lattice QCD results with expectations from the heavy-quark expansion and available experimental data.
We evaluate the partial decay widths for the semileptonic $Lambda_b to bar u_l l Lambda_c(2595)$ and $Lambda_b to bar u_l l Lambda_c(2625)$ decays from the perspective that these two $Lambda^*_c$ resonances are dynamically generated from the $DN$ a
We present the first lattice-QCD determination of the form factors describing the semileptonic decays $Lambda_b to Lambda_c^*(2595)ell^-bar{ u}$ and $Lambda_b to Lambda_c^*(2625)ell^-bar{ u}$, where the $Lambda_c^*(2595)$ and $Lambda_c^*(2625)$ are t
We study the semileptonic decay of $Lambda_c$ to $ u l^+$ and $Lambda(1405)$, where the $Lambda(1405)$ is seen in the invariant mass distribution of $pi Sigma$. We perform the hadronization of the quarks produced in the reaction in order to have a me
We present the first lattice-QCD calculation of the form factors governing the charm-baryon semileptonic decays $Lambda_c to Lambda^*(1520)ell^+ u_ell$. As in our previous calculation of the $Lambda_b to Lambda^*(1520)$ form factors, we work in the $
We study the implications for $Lambda_b to Lambda_c^*ellbar{ u}_ell$ and $Lambda_b to Lambda_c^*pi^-$ $[Lambda_c^*=Lambda_c(2595)$ and $Lambda_c(2625)]$ decays that can be deduced from heavy quark spin symmetry (HQSS). Identifying the odd parity $Lam