ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of insulating ferromagnetism in iron oxychalcogenide Ce$_2$O$_2$FeSe$_2$

154   0   0.0 ( 0 )
 نشر من قبل Ling-Fang Lin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An insulating ferromagnetic (FM) phase exists in the quasi-one-dimensional iron chalcogenide Ce$_2$O$_2$FeSe$_2$ but its origin is unknown. To understand the FM mechanism, here a systematic investigation of this material is provided, analyzing the competition between ferromagnetic and antiferromagnetic tendencies and the interplay of hoppings, Coulomb interactions, Hunds coupling, and crystal-field splittings. Our intuitive analysis based on second-order perturbation theory shows that large entanglements between doubly-occupied and half-filled orbitals play a key role in stabilizing the FM order in Ce$_2$O$_2$FeSe$_2$. In addition, via many-body computational techniques applied to a multi-orbital Hubbard model, the phase diagram confirms the proposed FM mechanism, in agreement with experiments.

قيم البحث

اقرأ أيضاً

The correlated electron material CePd$_2$P$_2$ crystallizes in the ThCr$_2$Si$_2$ structure and orders ferromagnetically at 29 K. Lai et al. [Phys. Rev. B 97, 224406 (2018)] found evidence for a ferromagnetic quantum critical point induced by chemica l compression via substitution of Ni for Pd. However, disorder effects due to the chemical substitution interfere with a simple analysis of the possible critical behavior. In the present work, we examine the temperature - pressure - magnetic field phase diagram of single crystalline CePd$_2$P$_2$ to 25 GPa using a combination of resistivity, magnetic susceptibility, and x-ray diffraction measurements. We find that the ferromagnetism appears to be destroyed near 12 GPa, without any change in the crystal structure.
The search for quantum spin liquids (QSL) -- topological magnets with fractionalized excitations -- has been a central theme in condensed matter and materials physics. While theories are no longer in short supply, tracking down materials has turned o ut to be remarkably tricky, in large part because of the difficulty to diagnose experimentally a state with only topological, rather than conventional, forms of order. Pyrochlore systems have proven particularly promising, hosting a classical Coulomb phase in the spin ices Dy/Ho$_2$Ti$_2$O$_7$, with subsequent proposals of candidate QSLs in other pyrochlores. Connecting experiment with detailed theory exhibiting a robust QSL has remained a central challenge. Here, focusing on the strongly spin-orbit coupled effective $S=1/2$ pyrochlore Ce$_2$Zr$_2$O$_7$, we analyse recent thermodynamic and neutron scattering experiments, to identify a microscopic effective Hamiltonian through a combination of finite temperature Lanczos, Monte Carlo and analytical spin dynamics calculations. Its parameter values suggest a previously unobserved exotic phase, a $pi$-flux U(1) QSL. Intriguingly, the octupolar nature of the moments makes them less prone to be affected by crystal imperfections or magnetic impurities, while also hiding some otherwise characteristic signatures from neutrons, making this QSL arguably more stable than its more conventional counterparts.
Understanding the complex phase diagram of cuprate superconductors is an outstanding challenge. The most actively studied questions surround the nature of the pseudogap and strange metal states and their relationship to superconductivity. In contrast , there is general agreement that the low energy physics of the Mott insulating parent state is well captured by a two-dimensional spin $S$ = 1/2 antiferromagnetic (AFM) Heisenberg model. However, recent observations of a large thermal Hall conductivity in several parent cuprates appear to defy this simple model and suggest proximity to a magneto-chiral state that breaks all mirror planes perpendicular to the CuO$_2$ layers. Here we use optical second harmonic generation to directly resolve the point group symmetries of the model parent cuprate Sr$_2$CuO$_2$Cl$_2$. We report evidence of an order parameter $Phi$ that breaks all perpendicular mirror planes and is consistent with a magneto-chiral state in zero magnetic field. Although $Phi$ is clearly coupled to the AFM order parameter, we are unable to realize its time-reversed partner ($-Phi$) by thermal cycling through the AFM transition temperature ($T_{textrm{N}}$ $approx$ 260 K) or by sampling different spatial locations. This suggests that $Phi$ onsets above $T_{textrm{N}}$ and may be relevant to the mechanism of pseudogap formation.
The magnetic and electronic phase diagram of a model for the quasi-one-dimensional alkali metal iron selenide compound Na$_2$FeSe$_2$ is presented. The novelty of this material is that the valence of iron is Fe$^{2+}$ contrary to most other iron-chai n compounds with valence Fe$^{3+}$. Using first-principles techniques, we developed a three-orbital tight-binding model that reproduces the {it ab initio} band structure near the Fermi level. Including Hubbard and Hund couplings and studying the model via the density matrix renormalization group and Lanczos methods, we constructed the ground state phase diagram. A robust region where the block state $uparrow uparrow downarrow downarrow uparrow uparrow downarrow downarrow$ is stabilized was unveiled. The analog state in iron ladders, employing 2$times$2 ferromagnetic blocks, is by now well-established, but in chains a block magnetic order has not been observed yet in real materials. The phase diagram also contains a large region of canonical staggered spin order $uparrow downarrow uparrow downarrow uparrow downarrow uparrow$ at very large Hubbard repulsion. At the block to staggered transition region, a novel phase is stabilized with a mixture of both states: an inhomogeneous orbital-selective charge density wave with the exotic spin configuration $uparrow uparrow downarrow uparrow downarrow downarrow uparrow downarrow$. Our predictions for Na$_2$FeSe$_2$ may guide crystal growers and neutron scattering experimentalists towards the realization of block states in one-dimensional iron-selenide chain materials.
The antiferromagnet and semimetal EuCd$_2$As$_2$ has recently attracted a lot of attention due to a wealth of topological phases arising from the interplay of topology and magnetism. In particular, the presence of a single pair of Weyl points is pred icted for a ferromagnetic configuration of Eu spins along the $c$-axis in EuCd$_2$As$_2$. In the search for such phases, we investigate here the effects of hydrostatic pressure in EuCd$_2$As$_2$. For that, we present specific heat, transport and $mu$SR measurements under hydrostatic pressure up to $sim,2.5,$GPa, combined with {it ab initio} density functional theory (DFT) calculations. Experimentally, we establish that the ground state of EuCd$_2$As$_2$ changes from in-plane antiferromagnetic (AFM$_{ab}$) to ferromagnetic at a critical pressure of $,approx,$2,GPa, which is likely characterized by the moments dominantly lying within the $ab$ plane (FM$_{ab}$). The AFM$_{ab}$-FM$_{ab}$ transition at such a relatively low pressure is supported by our DFT calculations. Furthermore, our experimental and theoretical results indicate that EuCd$_2$As$_2$ moves closer to the sought-for FM$_c$ state (moments $parallel$ $c$) with increasing pressure further. We predict that a pressure of $approx$,23,GPa will stabilize the FM$_c$ state, if Eu remains in a 2+ valence state. Thus, our work establishes hydrostatic pressure as a key tuning parameter that (i) allows for a continuous tuning between magnetic ground states in a single sample of EuCd$_2$As$_2$ and (ii) enables the exploration of the interplay between magnetism and topology and thereby motivates a series of future experiments on this magnetic Weyl semimetal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا