ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient approximation of high-dimensional exponentials by tensornetworks

62   0   0.0 ( 0 )
 نشر من قبل Nando Farchmin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work a general approach to compute a compressed representation of the exponential $exp(h)$ of a high-dimensional function $h$ is presented. Such exponential functions play an important role in several problems in Uncertainty Quantification, e.g. the approximation of log-normal random fields or the evaluation of Bayesian posterior measures. Usually, these high-dimensional objects are intractable numerically and can only be accessed pointwise in sampling methods. In contrast, the proposed method constructs a functional representation of the exponential by exploiting its nature as a solution of an ordinary differential equation. The application of a Petrov--Galerkin scheme to this equation provides a tensor train representation of the solution for which we derive an efficient and reliable a posteriori error estimator. Numerical experiments with a log-normal random field and a Bayesian likelihood illustrate the performance of the approach in comparison to other recent low-rank representations for the respective applications. Although the present work considers only a specific differential equation, the presented method can be applied in a more general setting. We show that the composition of a generic holonomic function and a high-dimensional function corresponds to a differential equation that can be used in our method. Moreover, the differential equation can be modified to adapt the norm in the a posteriori error estimates to the problem at hand.



قيم البحث

اقرأ أيضاً

Fractional order controllers become increasingly popular due to their versatility and superiority in various performance. However, the bottleneck in deploying these tools in practice is related to their analog or numerical implementation. Numerical a pproximations are usually employed in which the approximation of fractional differintegrator is the foundation. Generally, the following three identical equations always hold, i.e., $frac{1}{s^alpha}frac{1}{s^{1-alpha}} = frac{1}{s}$, $s^alpha frac{1}{s^alpha} = 1$ and $s^alpha s^{1-alpha} = s$. However, for the approximate models of fractional differintegrator $s^alpha$, $alphain(-1,0)cup(0,1)$, there usually exist some conflicts on the mentioned equations, which might enlarge the approximation error or even cause fallacies in multiple orders occasion. To overcome the conflicts, this brief develops a piecewise approximate model and provides two procedures for designing the model parameters. The comparison with several existing methods shows that the proposed methods do not only satisfy the equalities but also achieve high approximation accuracy. From this, it is believed that this work can serve for simulation and realization of fractional order controllers more friendly.
In this paper, an implicit time stepping meshless scheme is proposed to find the numerical solution of high-dimensional sine-Gordon equations (SGEs) by combining the high dimensional model representation (HDMR) and the Fourier hyperbolic cross (HC) a pproximation. To ensure the sparseness of the relevant coefficient matrices of the implicit time stepping scheme, the whole domain is first divided into a set of subdomains, and the relevant derivatives in high-dimension can be separately approximated by the Fourier HDMR-HC approximation in each subdomain. The proposed method allows for stable large time-steps and a relatively small number of nodes with satisfactory accuracy. The numerical examples show that the proposed method is very attractive for simulating the high-dimensional SGEs.
The unscented Kalman inversion (UKI) method presented in [1] is a general derivative-free approach for the inverse problem. UKI is particularly suitable for inverse problems where the forward model is given as a black box and may not be differentiabl e. The regularization strategies, convergence property, and speed-up strategies [1,2] of the UKI are thoroughly studied, and the method is capable of handling noisy observation data and solving chaotic inverse problems. In this paper, we study the uncertainty quantification capability of the UKI. We propose a modified UKI, which allows to well approximate the mean and covariance of the posterior distribution for well-posed inverse problems with large observation data. Theoretical guarantees for both linear and nonlinear inverse problems are presented. Numerical results, including learning of permeability parameters in subsurface flow and of the Navier-Stokes initial condition from solution data at positive times are presented. The results obtained by the UKI require only $O(10)$ iterations, and match well with the expected results obtained by the Markov Chain Monte Carlo method.
In this work, a novel approach for the reliable and efficient numerical integration of the Kuramoto model on graphs is studied. For this purpose, the notion of order parameters is revisited for the classical Kuramoto model describing all-to-all inter actions of a set of oscillators. First numerical experiments confirm that the precomputation of certain sums significantly reduces the computational cost for the evaluation of the right-hand side and hence enables the simulation of high-dimensional systems. In order to design numerical integration methods that are favourable in the context of related dynamical systems on network graphs, the concept of localised order parameters is proposed. In addition, the detection of communities for a complex graph and the transformation of the underlying adjacency matrix to block structure is an essential component for further improvement. It is demonstrated that for a submatrix comprising relatively few coefficients equal to zero, the precomputation of sums is advantageous, whereas straightforward summation is appropriate in the complementary case. Concluding theoretical considerations and numerical comparisons show that the strategy of combining effective community detection algorithms with the localisation of order parameters potentially reduces the computation time by several orders of magnitude.
We propose an accurate algorithm for a novel sum-of-exponentials (SOE) approximation of kernel functions, and develop a fast algorithm for convolution quadrature based on the SOE, which allows an order $N$ calculation for $N$ time steps of approximat ing a continuous temporal convolution integral. The SOE method is constructed by a combination of the de la Vallee-Poussin sums for a semi-analytical exponential expansion of a general kernel, and a model reduction technique for the minimization of the number of exponentials under given error tolerance. We employ the SOE expansion for the finite part of the splitting convolution kernel such that the convolution integral can be solved as a system of ordinary differential equations due to the exponential kernels. The remaining part is explicitly approximated by employing the generalized Taylor expansion. The significant features of our algorithm are that the SOE method is efficient and accurate, and works for general kernels with controllable upperbound of positive exponents. We provide numerical analysis for the SOE-based convolution quadrature. Numerical results on different kernels, the convolution integral and integral equations demonstrate attractive performance of both accuracy and efficiency of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا