ﻻ يوجد ملخص باللغة العربية
This paper presents a novel approach to characterize the dynamics of the limit spectrum of large random matrices. This approach is based upon the notion we call spectral dominance. In particular, we show that the limit spectral measure can be determined as the derivative of the unique viscosity solution of a partial integro-differential equation. This also allows to make general and short proofs for the convergence problem. We treat the cases of Dyson Brownian motions, Wishart processes and present a general class of models for which this characterization holds.
In this paper two independent and unitarily invariant projection matrices P(N) and Q(N) are considered and the large deviation is proven for the eigenvalue density of all polynomials of them as the matrix size $N$ converges to infinity. The result is
We consider conservative cross-diffusion systems for two species where individual motion rates depend linearly on the local density of the other species. We develop duality estimates and obtain stability and approximation results. We first control th
A reflexive generalized inverse and the Moore-Penrose inverse are often confused in statistical literature but in fact they have completely different behaviour in case the population covariance matrix is not a multiple of identity. In this paper, we
Let $Q_{n,d}$ denote the random combinatorial matrix whose rows are independent of one another and such that each row is sampled uniformly at random from the subset of vectors in ${0,1}^n$ having precisely $d$ entries equal to $1$. We present a short