ترغب بنشر مسار تعليمي؟ اضغط هنا

Railroad is not a Train: Saliency as Pseudo-pixel Supervision for Weakly Supervised Semantic Segmentation

177   0   0.0 ( 0 )
 نشر من قبل Hyunjung Shim Dr.
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing studies in weakly-supervised semantic segmentation (WSSS) using image-level weak supervision have several limitations: sparse object coverage, inaccurate object boundaries, and co-occurring pixels from non-target objects. To overcome these challenges, we propose a novel framework, namely Explicit Pseudo-pixel Supervision (EPS), which learns from pixel-level feedback by combining two weak supervisions; the image-level label provides the object identity via the localization map and the saliency map from the off-the-shelf saliency detection model offers rich boundaries. We devise a joint training strategy to fully utilize the complementary relationship between both information. Our method can obtain accurate object boundaries and discard co-occurring pixels, thereby significantly improving the quality of pseudo-masks. Experimental results show that the proposed method remarkably outperforms existing methods by resolving key challenges of WSSS and achieves the new state-of-the-art performance on both PASCAL VOC 2012 and MS COCO 2014 datasets.

قيم البحث

اقرأ أيضاً

In this paper, we study the semi-supervised semantic segmentation problem via exploring both labeled data and extra unlabeled data. We propose a novel consistency regularization approach, called cross pseudo supervision (CPS). Our approach imposes th e consistency on two segmentation networks perturbed with different initialization for the same input image. The pseudo one-hot label map, output from one perturbed segmentation network, is used to supervise the other segmentation network with the standard cross-entropy loss, and vice versa. The CPS consistency has two roles: encourage high similarity between the predictions of two perturbed networks for the same input image, and expand training data by using the unlabeled data with pseudo labels. Experiment results show that our approach achieves the state-of-the-art semi-supervised segmentation performance on Cityscapes and PASCAL VOC 2012. Code is available at https://git.io/CPS.
Most weakly supervised semantic segmentation (WSSS) methods follow the pipeline that generates pseudo-masks initially and trains the segmentation model with the pseudo-masks in fully supervised manner after. However, we find some matters related to t he pseudo-masks, including high quality pseudo-masks generation from class activation maps (CAMs), and training with noisy pseudo-mask supervision. For these matters, we propose the following designs to push the performance to new state-of-art: (i) Coefficient of Variation Smoothing to smooth the CAMs adaptively; (ii) Proportional Pseudo-mask Generation to project the expanded CAMs to pseudo-mask based on a new metric indicating the importance of each class on each location, instead of the scores trained from binary classifiers. (iii) Pretended Under-Fitting strategy to suppress the influence of noise in pseudo-mask; (iv) Cyclic Pseudo-mask to boost the pseudo-masks during training of fully supervised semantic segmentation (FSSS). Experiments based on our methods achieve new state-of-art results on two changeling weakly supervised semantic segmentation datasets, pushing the mIoU to 70.0% and 40.2% on PAS-CAL VOC 2012 and MS COCO 2014 respectively. Codes including segmentation framework are released at https://github.com/Eli-YiLi/PMM
Existing weakly supervised semantic segmentation (WSSS) methods usually utilize the results of pre-trained saliency detection (SD) models without explicitly modeling the connections between the two tasks, which is not the most efficient configuration . Here we propose a unified multi-task learning framework to jointly solve WSSS and SD using a single network, ie saliency, and segmentation network (SSNet). SSNet consists of a segmentation network (SN) and a saliency aggregation module (SAM). For an input image, SN generates the segmentation result and, SAM predicts the saliency of each category and aggregating the segmentation masks of all categories into a saliency map. The proposed network is trained end-to-end with image-level category labels and class-agnostic pixel-level saliency labels. Experiments on PASCAL VOC 2012 segmentation dataset and four saliency benchmark datasets show the performance of our method compares favorably against state-of-the-art weakly supervised segmentation methods and fully supervised saliency detection methods.
Modern approaches typically formulate semantic segmentation as a per-pixel classification task, while instance-level segmentation is handled with an alternative mask classification. Our key insight: mask classification is sufficiently general to solv e both semantic- and instance-level segmentation tasks in a unified manner using the exact same model, loss, and training procedure. Following this observation, we propose MaskFormer, a simple mask classification model which predicts a set of binary masks, each associated with a single global class label prediction. Overall, the proposed mask classification-based method simplifies the landscape of effective approaches to semantic and panoptic segmentation tasks and shows excellent empirical results. In particular, we observe that MaskFormer outperforms per-pixel classification baselines when the number of classes is large. Our mask classification-based method outperforms both current state-of-the-art semantic (55.6 mIoU on ADE20K) and panoptic segmentation (52.7 PQ on COCO) models.
Semantic segmentation on 3D point clouds is an important task for 3D scene understanding. While dense labeling on 3D data is expensive and time-consuming, only a few works address weakly supervised semantic point cloud segmentation methods to relieve the labeling cost by learning from simpler and cheaper labels. Meanwhile, there are still huge performance gaps between existing weakly supervised methods and state-of-the-art fully supervised methods. In this paper, we train a semantic point cloud segmentation network with only a small portion of points being labeled. We argue that we can better utilize the limited supervision information as we densely propagate the supervision signal from the labeled points to other points within and across the input samples. Specifically, we propose a cross-sample feature reallocating module to transfer similar features and therefore re-route the gradients across two samples with common classes and an intra-sample feature redistribution module to propagate supervision signals on unlabeled points across and within point cloud samples. We conduct extensive experiments on public datasets S3DIS and ScanNet. Our weakly supervised method with only 10% and 1% of labels can produce compatible results with the fully supervised counterpart.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا