ﻻ يوجد ملخص باللغة العربية
Designing reliable Speech Emotion Recognition systems is a complex task that inevitably requires sufficient data for training purposes. Such extensive datasets are currently available in only a few languages, including English, German, and Italian. In this paper, we present SEMOUR, the first scripted database of emotion-tagged speech in the Urdu language, to design an Urdu Speech Recognition System. Our gender-balanced dataset contains 15,040 unique instances recorded by eight professional actors eliciting a syntactically complex script. The dataset is phonetically balanced, and reliably exhibits a varied set of emotions as marked by the high agreement scores among human raters in experiments. We also provide various baseline speech emotion prediction scores on the database, which could be used for various applications like personalized robot assistants, diagnosis of psychological disorders, and getting feedback from a low-tech-enabled population, etc. On a random test sample, our model correctly predicts an emotion with a state-of-the-art 92% accuracy.
Learned speech representations can drastically improve performance on tasks with limited labeled data. However, due to their size and complexity, learned representations have limited utility in mobile settings where run-time performance can be a sign
A person tends to generate dynamic attention towards speech under complicated environments. Based on this phenomenon, we propose a framework combining dynamic attention and recursive learning together for monaural speech enhancement. Apart from a maj
Text-to-speech (TTS) acoustic models map linguistic features into an acoustic representation out of which an audible waveform is generated. The latest and most natural TTS systems build a direct mapping between linguistic and waveform domains, like S
In this paper, we propose a multi-channel network for simultaneous speech dereverberation, enhancement and separation (DESNet). To enable gradient propagation and joint optimization, we adopt the attentional selection mechanism of the multi-channel f
The capability of the human to pay attention to both coarse and fine-grained regions has been applied to computer vision tasks. Motivated by that, we propose a collaborative learning framework in the complex domain for monaural noise suppression. The