ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma-ray and Neutrino Signals from Accretion Disk Coronae of Active Galactic Nuclei

99   0   0.0 ( 0 )
 نشر من قبل Yoshiyuki Inoue
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To explain X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts establish the existence of weak non-thermal coronal activity. Besides, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10-yr survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current observational understandings of AGN coronae and describes how AGN coronae generate high-energy particles. We also provide ways to test the AGN corona model with radio, X-ray, MeV gamma-ray, and high-energy neutrino observations.

قيم البحث

اقرأ أيضاً

Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relati ons. A strong support of this quasar mode feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been directly compared to X-ray spectra, providing important insights into the wind physics. However, fundamental improvements on these studies will come only from the unprecedented energy resolution and sensitivity of the upcoming X-ray observatories, namely ASTRO-H (launch date early 2016) and Athena (2028).
Active galactic nuclei (AGN) with jets seen at small viewing angles are the most luminous and abundant objects in the $gamma$-ray sky. AGN with jets misaligned along the line-of-sight appear fainter in the sky, but are more numerous than the brighter blazars. We calculate the diffuse $gamma$-ray emission due to the population of misaligned AGN (MAGN) unresolved by the Large Area Telescope (LAT) on the {it Fermi} Gamma-ray Space Telescope ({it Fermi}). A correlation between the $gamma$-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with upper limits based on {it Fermi}-LAT data for a large sample of radio-loud MAGN. We constrain the derived $gamma$-ray luminosity function by means of the source count distribution of the radio galaxies (RGs) detected by the {it Fermi}-LAT. We finally calculate the diffuse $gamma$-ray flux due to the whole MAGN population. Our results demonstrate that the MAGN can contribute from 10% up to nearly the entire measured Isotropic Gamma-Ray Background (IGRB). We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.
Active Galactic Nuclei can be copious extragalactic emitters of MeV-GeV-TeV gamma rays, a phenomenon linked to the presence of relativistic jets powered by a super-massive black hole in the center of the host galaxy. Most of gamma-ray emitting active galactic nuclei, with more than 1500 known at GeV energies, and more than 60 at TeV energies, are called blazars. The standard blazar paradigm features a jet of relativistic magnetized plasma ejected from the neighborhood of a spinning and accreting super-massive black hole, close to the observer direction. Two classes of blazars are distinguished from observations: the flat-spectrum radio-quasar class (FSRQ) is characterized by strong external radiation fields, emission of broad optical lines, and dust tori. The BL Lac class (from the name of one of its members, BL Lacertae) corresponds to weaker advection-dominated flows with gamma-ray spectra dominated by the inverse Compton effect on synchrotron photons. This paradigm has been very successful for modeling the broadband spectral energy distributions of blazars. However, many fundamental issues remain, including the role of hadronic processes and the rapid variability of those BL Lac objects whose synchrotron spectrum peaks at UV or X-ray frequencies. A class of gamma-ray--emitting radio galaxies, which are thought to be the misaligned counterparts of blazars, has emerged from the results of the Fermi-Large Area Telescope and of ground-based Cherenkov telescopes. Blazars and their misaligned ounterparts make up most of the >100 MeV extragalactic gamma ray background (EGB), and are uspected of being the sources of ultra-high energy cosmic rays. The future Cherenkov Telescope Array, in synergy with the Fermi-Large Area Telescope and a wide range of telescopes in space and on he ground, will write the next chapter of blazar physics.
We explore possible physical origin of correlation between radio wave and very-high-energy neutrino emission in active galactic nuclei (AGN), suggested by recently reported evidence for correlation between neutrino arrival directions and positions of brightest radio-loud AGN. We show that such correlation is expected if both synchrotron emitting electrons and neutrinos originate from decays of charged pions produced in proton-proton interactions in parsec-scale relativistic jet propagating through circum-nuclear medium of the AGN.
We report estimates of the X-ray coronal size of active galactic nuclei in the lamppost geometry. In this commonly adopted scenario, the corona is assumed for simplicity to be a point-like X-ray source located on the axis of the accretion disc. Howev er, the corona must intercept a number of optical/UV seed photons from the disc consistent with the observed X-ray flux, which constrains its size. We employ a relativistic ray-tracing code, originally developed by Dovv{c}iak & Done (2016), that calculates the size of a Comptonizing lamppost corona illuminated by a standard thin disc. We assume that the disc extends down to the innermost stable circular orbit of a non-spinning or a maximally spinning black hole. We apply this method to a sample of 20 Seyfert 1 galaxies, using simultaneous optical/UV and X-ray archival data from XMM-Newton. At least for the sources accreting below the Eddington limit, we find that a Comptonizing lamppost corona can generally exist, but with constraints on its size and height above the event horizon of the black hole depending on the spin. For a maximally spinning black hole, a solution can almost always be found at any height, while for a non-spinning black hole the height must generally be higher than 5 gravitational radii. This is because, for a given luminosity, a higher spin implies more seed photons illuminating the corona due to a larger and hotter inner disc area. The maximal spin solution is favored, as it predicts an X-ray photon index in better agreement with the observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا