ﻻ يوجد ملخص باللغة العربية
In this paper, we give a necessary and sufficient condition for a graphical strip in the Heisenberg group $mathbb{H}$ to be area-minimizing in the slab ${-1<x<1}$. We show that our condition is necessary by introducing a family of deformations of graphical strips based on varying a vertical curve. We show that it is sufficient by showing that strips satisfying the condition have monotone epigraphs. We use this condition to show that any area-minimizing ruled entire intrinsic graph in the Heisenberg group is a vertical plane and to find a boundary curve that admits uncountably many fillings by area-minimizing surfaces.
Minimal surfaces in $mathbb{R}^n$ can be locally approximated by graphs of harmonic functions, i.e., functions that are critical points of the Dirichlet energy, but no analogous theorem is known for $H$-minimal surfaces in the three-dimensional Heise
We endow the set of probability measures on a weighted graph with a Monge--Kantorovich metric, induced by a function defined on the set of vertices. The graph is assumed to have $n$ vertices and so, the boundary of the probability simplex is an affin
We provide a new geometric proof of Reimanns theorem characterizing quasiconformal mappings as the ones preserving functions of bounded mean oscillation. While our proof is new already in the Euclidean spaces, it is applicable in Heisenberg groups as
We here revisit Fourier analysis on the Heisenberg group H^d. Whereas, according to the standard definition, the Fourier transform of an integrable function f on H^d is a one parameter family of bounded operators on L 2 (R^d), we define (by taking ad
We give a geometric criterion for a topological surface in the first Heisenberg group to be an intrinsic Lipschitz graph, using planar cones instead of the usual open cones.