ترغب بنشر مسار تعليمي؟ اضغط هنا

Traveling wave solutions for the generalized (2+1)-dimensional Kundu-Mukherjee-Naskar equation

111   0   0.0 ( 0 )
 نشر من قبل Yuqian Zhou
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider two types of traveling wave systems of the generalized Kundu-Mukherjee-Naskar equation. Firstly, due to the integrity, we obtain their energy functions. Then, the dynamical system method is applied to study bifurcation behaviours of the two types of traveling wave systems to obtain corresponding global phase portraits in different parameter bifurcation sets. According to them, every bounded and unbounded orbits can be identified clearly and investigated carefully which correspond to various traveling wave solutions of the generalized Kundu-Mukherjee-Naskar equation exactly. Finally, by integrating along these orbits and calculating some complicated elliptic integral, we obtain all type I and type II traveling wave solutions of the generalized Kundu-Mukherjee-Naskar equation without loss.

قيم البحث

اقرأ أيضاً

We consider the $(1+1)$-dimensional quasilinear wave equation $g(x)w_{tt}-w_{xx}+h(x) (w_t^3)_t=0$ on $mathbb{R}timesmathbb{R}$ which arises in the study of localized electromagnetic waves modeled by Kerr-nonlinear Maxwell equations. We are intereste d in time-periodic, spatially localized solutions. Here $gin L^{infty}(mathbb{R})$ is even with $g otequiv 0$ and $h(x)=gamma,delta_0(x)$ with $gammain{mathbb{R}}backslash{0}$ and $delta_0$ the delta-distribution supported in $0$. We assume that $0$ lies in a spectral gap of the operators $L_k=-frac{d^2}{dx^2}-k^2omega^2g$ on $L^2(mathbb{R})$ for all $kin 2mathbb{Z}+1$ together with additional properties of the fundamental set of solutions of $L_k$. By expanding $w$ into a Fourier series in time we transfer the problem of finding a suitably defined weak solution to finding a minimizer of a functional on a sequence space. The solutions that we have found are exponentially localized in space. Moreover, we show that they can be well approximated by truncating the Fourier series in time. The guiding examples, where all assumptions are fulfilled, are explicitly given step potentials and periodic step potentials $g$. In these examples we even find infinitely many distinct breathers.
This paper is concerned with the conditions of existence and nonexistence of traveling wave solutions (TWS) for a class of discrete diffusive epidemic models. We find that the existence of TWS is determined by the so-called basic reproduction number and the critical wave speed: When the basic reproduction number R0 greater than 1, there exists a critical wave speed c* > 0, such that for each c >= c * the system admits a nontrivial TWS and for c < c* there exists no nontrivial TWS for the system. In addition, the boundary asymptotic behaviour of TWS is obtained by constructing a suitable Lyapunov functional and employing Lebesgue dominated convergence theorem. Finally, we apply our results to two discrete diffusive epidemic models to verify the existence and nonexistence of TWS.
In this work, we investigate the system of three species ecological model involving one predator-prey subsystem coupling with a generalist predator with negative effect on the prey. Without diffusive terms, all global dynamics of its corresponding re action equations are proved analytically for all classified parameters. With diffusive terms, the transitions of different spatial homogeneous solutions, the traveling wave solutions, are showed by higher dimensional shooting method, the Wazewski method. Some interesting numerical simulations are performed, and biological implications are given.
170 - Hui Wei , Shuguan Ji 2017
This paper is devoted to the study of periodic solutions for a radially symmetric semilinear wave equation in an $n$-dimensional ball. By combining the variational methods and saddle point reduction technique, we prove there exist at least three peri odic solutions for arbitrary space dimension $n$. The structure of the spectrum of the linearized problem plays an essential role in the proof, and the construction of a suitable working space is devised to overcome the restriction of space dimension.
Recently, the Whitham and capillary-Whitham equations were shown to accurately model the evolution of surface waves on shallow water. In order to gain a deeper understanding of these equations, we compute periodic, traveling-wave solutions to both an d study their stability. We present plots of a representative sampling of solutions for a range of wavelengths, wave speeds, wave heights, and surface tension values. Finally, we discuss the role these parameters play in the stability of the solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا