ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of Fischer-Tropsch Type reactions on chondritic meteorites

93   0   0.0 ( 0 )
 نشر من قبل Victoria Cabedo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

How simple organic matter appeared on Earth and the processes by which it transformed into more evolved organic compounds, which ultimately led to the emergence of life, is still an open topic. Different scenarios have been proposed, the main one assumes that simple organic compounds were synthesized, either in the gas phase or on the surfaces of dust grains, during the process of star formation, and were incorporated into larger bodies in the protoplanetary disk. Transformation of these simple organic compounds in more complex forms is still a matter of debate. Recent discoveries point out to catalytic properties of dust grains present in the early stellar envelope, which can nowadays be found in the form of chondrites. The huge infall of chondritic meteorites during the early periods of Earth suggests that the same reactions could have taken place in certain environments of the Earth surface, with conditions more favorable for organic synthesis. This work attempts the synthesis of simple organic molecules, such as hydrocarbons and alcohols, via Fischer-Tropsch Type reactions supported by different chondritic materials under early-Earth conditions, to investigate if organic synthesis can likely occur in this environment and which are the differences in selectivity when using different types of chondrites. Fischer-Tropsch-type reactions are investigated from mixtures of CO and H2 at 1 atm of pressure on the surfaces of different chondritic samples. The different products obtained are analyzed in situ by gas chromatography. Different Fischer-Tropsch reaction products are obtained in quantitative amounts. The formation of alkanes and alkenes being the main processes. Formation of alcohols also takes place in a smaller amount. Other secondary products were obtained in a qualitative way.



قيم البحث

اقرأ أيضاً

The age of iron meteorites implies that accretion of protoplanets began during the first millions of years of the solar system. Due to the heat generated by 26Al decay, many early protoplanets were fully differentiated with an igneous crust produced during the cooling of a magma ocean and the segregation at depth of a metallic core. The formation and nature of the primordial crust generated during the early stages of melting is poorly understood, due in part to the scarcity of available samples. The newly discovered meteorite Erg Chech 002 (EC 002) originates from one such primitive igneous crust and has an andesite bulk composition. It derives from the partial melting of a noncarbonaceous chondritic reservoir, with no depletion in alkalis relative to the Sun photosphere and at a high degree of melting of around 25 percents. Moreover, EC 002 is, to date, the oldest known piece of an igneous crust with a 26Al-26Mg crystallization age of 4,565.0 million years (My). Partial melting took place at 1,220 C up to several hundred kyr before, implying an accretion of the EC 002 parent body ca. 4,566 My ago. Protoplanets covered by andesitic crusts were probably frequent. However, no asteroid shares the spectral features of EC 002, indicating that almost all of these bodies have disappeared, either because they went on to form the building blocks of larger bodies or planets or were simply destroyed.
We have performed an experimental study of the crystal structure, lattice-dynamics, and optical properties of PbCrO4 (the mineral crocoite) at ambient and high pressures. In particular, the crystal structure, Raman-active phonons, and electronic band -gap have been accurately determined. X-ray-diffraction, Raman, and optical-absorption experiments have allowed us also to completely characterize two pressure-induced structural phase transitions. The first transition is isostructural, maintaining the monoclinic symmetry of the crystal, and having important consequences in the physical properties; among other a band-gap collapse is induced. The second one involves an increase of the symmetry of the crystal, a volume collapse, and probably the metallization of PbCrO4. The results are discussed in comparison with related compounds and the effects of pressure in the electronic structure explained. Finally, the room-temperature equation of state of the low-pressure phases is also obtained.
Several lines of evidence indicate a non-chondritic composition for Bulk Earth. If Earth formed from the accretion of chondritic material, its non-chondritic composition, in particular the super-chondritic 142Nd/144Nd and low Mg/Fe ratios, might be e xplained by the collisional erosion of differentiated planetesimals during its formation. In this work we use an N-body code, that includes a state-of-the-art collision model, to follow the formation of protoplanets, similar to proto-Earth, from differentiated planetesimals (> 100 km) up to isolation mass (> 0.16 M_Earth). Collisions between differentiated bodies have the potential to change the core-mantle ratio of the accreted protoplanets. We show that sufficient mantle material can be stripped from the colliding bodies during runaway and oligarchic growth, such that the final protoplanets could have Mg/Fe and Si/Fe ratios similar to that of bulk Earth, but only if Earth is an extreme case and the core is assumed to contain 10% silicon by mass. This may indicate an important role for collisional differentiation during the giant impact phase if Earth formed from chondritic material.
Chondrites are rocky fragments of asteroids that formed at different times and heliocentric distances in the early solar system. Most chondrite groups contain water-bearing minerals, attesting that both water-ice and dust were accreted on their paren t asteroids. Nonetheless, the hydrogen isotopic composition (D/H) of water in the different chondrite groups remains poorly constrained, due to the intimate mixture of hydrated minerals and organic compounds, the other main H-bearing phase in chondrites. Building on our recent works using in situ secondary ion mass spectrometry analyses, we determined the H isotopic composition of water in a large set of chondritic samples (CI, CM, CO, CR, and C-ungrouped carbonaceous chondrites) and report that water in each group shows a distinct and unique D/H signature. Based on a comparison with literature data on bulk chondrites and their water and organics, our data do not support a preponderant role of parent-body processes in controlling the D/H variations among chondrites. Instead, we propose that the water and organic D/H signatures were mostly shaped by interactions between the protoplanetary disk and the molecular cloud that episodically fed the disk over several million years. Because the preservation of D-rich interstellar water and/or organics in chondritic materials is only possible below their respective sublimation temperatures (160 and 350-450 K), the H isotopic signatures of chondritic materials depend on both the timing and location at which their parent body formed.
118 - Sachiko Amari 2009
Presolar diamond, the carrier of the isotopically anomalous Xe component Xe-HL, was the first mineral type of presolar dust that was isolated from meteorites. The excesses in the light, p-process only isotopes 124Xe and 126Xe, and in the heavy, r-pro cess only isotopes 134Xe and 136Xe relative to the solar ratios indicate that Xe-HL was produced in supernovae: they are the only stellar source where these two processes are believed to take place. Although these processes occur in supernovae, their physical conditions and timeframes are completely different. Yet the excesses are always correlated in diamond separates from meteorites. Furthermore, the p-process 124Xe/126Xe inferred from Xe-L and the r-process 134Xe/136Xe from Xe-H do not agree with the p-process and r-process ratios derived from the solar system abundance, and the inferred p-process ratio does not agree with those predicted from stellar models. The rapid separation scenario, where the separation of Xe and its radiogenic precursors Te and I takes place at the very early stage (7900 sec after the end of the r-process), has been proposed to explain Xe-H. Alternatively, mixing of 20% of material that experienced neutron burst and 80% of solar material can reproduce the pattern of Xe-H, although Xe-L is not accounted for with this scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا