ﻻ يوجد ملخص باللغة العربية
Whispering gallery modes in a microwire are characterized by a nearly equidistant energy spectrum. In the strong exciton-photon coupling regime, this system represents a bosonic cascade: a ladder of discrete energy levels that sustains stimulated transitions between neighboring steps. In this work, by using femtosecond angle-resolved spectroscopic imaging technique, the ultrafast dynamics of polaritons in a bosonic cascade based on a one-dimensional ZnO whispering gallery microcavity is explicitly visualized. Clear ladder-form build-up process from higher to lower energy branches of the polariton condensates are observed, which are well reproduced by modeling using rate equations. Moreover, the polariton parametric scattering dynamics are distinguished on a timescale of hundreds of femtoseconds. Our understanding of the femtosecond condensation and scattering dynamics paves the way towards ultrafast coherent control of polaritons at room temperature, which will make it promising for high-speed all-optical integrated applications.
Polaritonic devices exploit the coherent coupling between excitonic and photonic degrees of freedom to perform highly nonlinear operations with low input powers. Most of the current results exploit excitons in epitaxially grown quantum wells and requ
Atomically thin transition metal dichalcogenides possess valley dependent functionalities that are usually available only at crogenic temperatures, constrained by various valley depolarization scatterings. The formation of exciton polaritons by coher
High power single mode quantum cascade lasers with a narrow far field are important for several applications including surgery or military countermeasure. Existing technologies suffer from drawbacks such as operation temperature and scalability. In t
We report the room-temperature electroluminescence (EL) with nearly pure circular polarization (CP) from GaAs-based spin-polarized light-emitting diodes (spin-LEDs). External magnetic fields are not used during device operation. There are two small s
Strong spatial confinement and highly reduced dielectric screening provide monolayer transition metal dichalcogenides (TMDCs) with strong many-body effects, thereby possessing optically forbidden excitonic states (i.e., dark excitons) at room tempera