ﻻ يوجد ملخص باللغة العربية
The Leggett-Garg inequality (LGI) distinguishes nonmacrorealistic channels from macrorealistic ones by constraining the experimental outcomes of the underlying system. In this work, we propose a class of the channels which, initially, cannot violate LGI (in the form of the temporal Bell inequality) but can violate it after the application of stochastic pre- and post- operations (SPPOs). As a proof-of-principle experiment, we demonstrate the stochastic pre- and post- operations in an amplitude-damping channel with photonic qubits. We denote the above phenomenon as hidden nonmacrorealistic channels. We also discuss the relationship between this hidden nonmacrorealistic channels (in terms of the temporal Clauser-Horne-Shimony-Holt (CHSH) inequality) and the strongly nonlocality-breaking channel, which breaks the hidden spatial CHSH nonlocality for arbitrary states. In general, if the channel satisfies hidden nonmacrorealism, it is not a strongly CHSH nonlocality-breaking channel.
The Leggett-Garg inequality, an analogue of Bells inequality involving correlations of measurements on a system at different times, stands as one of the hallmark tests of quantum mechanics against classical predictions. The phenomenon of neutrino osc
By weakly measuring the polarization of a photon between two strong polarization measurements, we experimentally investigate the correlation between the appearance of anomalous values in quantum weak measurements, and the violation of realism and non
We investigate how discrete internal degrees of freedom in a quasi-macroscopic system affect the violation of the Leggett--Garg inequality, a test of macroscopic-realism based on temporal correlation functions. As a specific example, we focus on an e
In contrast to Bells inequalities which test the correlations between multiple spatially separated systems, the Leggett-Garg inequalities test the temporal correlations between measurements of a single system. We experimentally demonstrate the violat
Weak measurement has provided new insight into the nature of quantum measurement, by demonstrating the ability to extract average state information without fully projecting the system. For single qubit measurements, this partial projection has been d