ﻻ يوجد ملخص باللغة العربية
In this paper, we compute and demonstrate the equivalence of the joint distribution of the first letter and descent statistics on six avoidance classes of permutations corresponding to two patterns of length four. This distribution is in turn shown to be equivalent to the distribution on a restricted class of inversion sequences for the statistics that record the last letter and number of distinct positive letters, affirming a recent conjecture of Lin and Kim. Members of each avoidance class of permutations and also of the class of inversion sequences are enumerated by the $n$-th large Schroder number and thus one obtains a new bivariate refinement of these numbers as a consequence. We make use of auxiliary combinatorial statistics, special generating functions (specific to each class) and the kernel method to establish our results. In some cases, we utilize the conjecture itself in a creative way to aid in solving the system of functional equations satisfied by the associated generating functions.
We consider a large family of equivalence relations on permutations in Sn that generalise those discovered by Knuth in his study of the Robinson-Schensted correspondence. In our most general setting, two permutations are equivalent if one can be obta
We continue our study of a new boundedness condition for affine permutations, motivated by the fruitful concept of periodic boundary conditions in statistical physics. We focus on bounded affine permutations of size $N$ that avoid the monotone decrea
A permutation whose any prefix has no more descents than ascents is called a ballot permutation. In this paper, we present a decomposition of ballot permutations that enables us to construct a bijection between ballot permutations and odd order permu
We consider permutations sortable by $k$ passes through a deterministic pop stack. We show that for any $kinmathbb N$ the set is characterised by finitely many patterns, answering a question of Claesson and Gu{dh}mundsson. Our characterisation dema
We introduce a new boundedness condition for affine permutations, motivated by the fruitful concept of periodic boundary conditions in statistical physics. We study pattern avoidance in bounded affine permutations. In particular, we show that if $tau