ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Transport Protocols for Distributed Quantum Computing

81   0   0.0 ( 0 )
 نشر من قبل Yangming Zhao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum computing holds a great promise and this work proposes to use new quantum data networks (QDNs) to connect multiple small quantum computers to form a cluster. Such a QDN differs from existing QKD networks in that the former must deliver data qubits reliably within itself. Two types of QDNs are studied, one using teleportation and the other using tell-and-go (TAG) to exchange quantum data. Two corresponding quantum transport protocols (QTPs), named Tele-QTP and TAG-QTP, are proposed to address many unique design challenges involved in reliable delivery of data qubits, and constraints imposed by quantum physics laws such as the no-cloning theorem, and limited availability of quantum memory. The proposed Tele-QTP and TAG-QTP are the first transport layer protocols for QDNs, complementing other works on the network protocol stack. Tele-QTP and TAG-QTP have novel mechanisms to support congestion-free and reliable delivery of streams of data qubits by managing the limited quantum memory at end hosts as well as intermediate nodes. Both analysis and extensive simulations show that the proposed QTPs can achieve a high throughput and fairness. This study also offers new insights into potential tradeoffs involved in using the two methods, teleportation and TAG, in two types of QDNs.

قيم البحث

اقرأ أيضاً

The Quantum Internet is envisioned as the final stage of the quantum revolution, opening fundamentally new communications and computing capabilities, including the distributed quantum computing. But the Quantum Internet is governed by the laws of qua ntum mechanics. Phenomena with no counterpart in classical networks, such as no-cloning, quantum measurement, entanglement and teleporting, impose very challenging constraints for the network design. Specifically, classical network functionalities, ranging from error-control mechanisms to overhead-control strategies, are based on the assumption that classical information can be safely read and copied. But this assumption does not hold in the Quantum Internet. As a consequence, the design of the Quantum Internet requires a major network-paradigm shift to harness the quantum mechanics specificities. The goal of this work is to shed light on the challenges and the open problems of the Quantum Internet design. To this aim, we first introduce some basic knowledge of quantum mechanics, needed to understand the differences between a classical and a quantum network. Then, we introduce quantum teleportation as the key strategy for transmitting quantum information without physically transferring the particle that stores the quantum information or violating the principles of the quantum mechanics. Finally, the key research challenges to design quantum communication networks are described.
106 - Priodyuti Pradhan 2020
Recently, storage of huge volume of data into Cloud has become an effective trend in modern day Computing due to its dynamic nature. After storing, users deletes their original copy of the data files. Therefore users, cannot directly control over tha t data. This lack of control introduces security issues in Cloud data storage, one of the most important security issue is integrity of the remotely stored data. Here, we propose a Distributed Algorithmic approach to address this problem with publicly probabilistic verifiable scheme. Due to heavy workload at the Third Party Auditor side, we distributes the verification task among various SUBTPAs. We uses Sobol Random Sequences to generates the random block numbers that maintains the uniformity property. In addition, our method provides uniformity for each subtasks also. To makes each subtask uniform, we uses some analytical approach. For this uniformity, our protocols verify the integrity of the data very efficiently and quickly. Also, we provides special care about critical data by using Overlap Task Distribution Keys.
We present a synthesis framework to map logic networks into quantum circuits for quantum computing. The synthesis framework is based on LUT networks (lookup-table networks), which play a key role in conventional logic synthesis. Establishing a connec tion between LUTs in a LUT network and reversible single-target gates in a reversible network allows us to bridge conventional logic synthesis with logic synthesis for quantum computing, despite several fundamental differences. We call our synthesis framework LUT-based Hierarchical Reversible Logic Synthesis (LHRS). Input to LHRS is a classical logic network; output is a quantum network (realized in terms of Clifford+$T$ gates). The framework offers to trade-off the number of qubits for the number of quantum gates. In a first step, an initial network is derived that only consists of single-target gates and already completely determines the number of qubits in the final quantum network. Different methods are then used to map each single-target gate into Clifford+$T$ gates, while aiming at optimally using available resources. We demonstrate the effectiveness of our method in automatically synthesizing IEEE compliant floating point networks up to double precision. As many quantum algorithms target scientific simulation applications, they can make rich use of floating point arithmetic components. But due to the lack of quantum circuit descriptions for those components, it can be difficult to find a realistic cost estimation for the algorithms. Our synthesized benchmarks provide cost estimates that allow quantum algorithm designers to provide the first complete cost estimates for a host of quantum algorithms. Thus, the benchmarks and, more generally, the LHRS framework are an essential step towards the goal of understanding which quantum algorithms will be practical in the first generations of quantum computers.
We present a number of quantum computing patterns that build on top of fundamental algorithms, that can be applied to solving concrete, NP-hard problems. In particular, we introduce the concept of a quantum dictionary as a summation of multiple patte rns and algorithms, and show how it can be applied in the context of Quadratic Unconstrained Binary Optimization (QUBO) problems. We start by presenting a visual approach to quantum computing, which avoids a heavy-reliance on quantum mechanics, linear algebra, or complex mathematical notation, and favors geometrical intuition and computing paradigms. We also provide insights on the fundamental quantum computing algorithms (Fourier Transforms, Phase Estimation, Grover, Quantum Counting, and Amplitude Estimation).
Qubit transmission protocols are presently point-to-point, and thus restrictive in their functionality. A quantum router is necessary for the quantum Internet to become a reality. We present a quantum router design based on teleportation, as well as mechanisms for entangled pair management. The prototype was validated using a quantum simulator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا