ترغب بنشر مسار تعليمي؟ اضغط هنا

Hidden energy scale in geometrically frustrated systems: are quantum spin liquids achievable?

128   0   0.0 ( 0 )
 نشر من قبل Sergey Syzranov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the enormous interest in quantum spin liquids, their experimental existence still awaits broad consensus. In particular, quenched disorder may turn a specific system into a spin glass and possibly preclude the formation of a quantum spin liquid. Here, we demonstrate that the glass transition among geometrically frustrated magnets, a materials class in which spin liquids are expected, differs qualitatively from conventional spin glass. Whereas conventional systems have a glass temperature that increases with increasing disorder, geometrically frustrated systems have a glass temperature that increases with decreasing disorder, approaching, in the clean limit, a finite value. This behaviour implies the existence of a hidden energy scale (far smaller than the Weiss constant) which is independent of disorder and drives the glass transition in the presence of disorder. Motivated by these observations, we propose a scenario in which the interplay of interactions and entropy in the disorder-free system yields a temperature-dependent magnetic permeability with a crossover temperature that determines the hidden energy scale. The relevance of this scale for quantum spin liquids is discussed.

قيم البحث

اقرأ أيضاً

212 - Tzu-Chi Hsieh , Yang-Zhi Chou , 2020
We develop a theory of finite-temperature momentum-resolved tunneling spectroscopy (MRTS) for disordered, interacting two-dimensional topological-insulator edges. The MRTS complements conventional electrical transport measurement in characterizing th e properties of the helical Luttinger liquid edges. Using standard bosonization technique, we study low-energy spectral function and the MRTS tunneling current, providing a detailed description controlled by disorder, interaction, and temperature, taking into account Rashba spin orbit coupling, interedge interaction and distinct edge velocities. Our theory provides a systematic description of the spectroscopic signals in the MRTS measurement and we hope will stimulate future experimental studies on the two-dimensional time-reversal invariant topological insulator.
Motivated by the recent synthesis of the spin-1 A-site spinel NiRh$_{text 2}$O$_{text 4}$, we investigate the classical to quantum crossover of a frustrated $J_1$-$J_2$ Heisenberg model on the diamond lattice upon varying the spin length $S$. Applyin g a recently developed pseudospin functional renormalization group (pf-FRG) approach for arbitrary spin-$S$ magnets, we find that systems with $S geq 3/2$ reside in the classical regime where the low-temperature physics is dominated by the formation of coplanar spirals and a thermal (order-by-disorder) transition. For smaller local moments $S$=1 or $S$=1/2 we find that the system evades a thermal ordering transition and forms a quantum spiral spin liquid where the fluctuations are restricted to characteristic momentum-space surfaces. For the tetragonal phase of NiRh$_{text 2}$O$_{text 4}$, a modified $J_1$-$J_2^-$-$J_2^perp$ exchange model is found to favor a conventionally ordered Neel state (for arbitrary spin $S$) even in the presence of a strong local single-ion spin anisotropy and it requires additional sources of frustration to explain the experimentally observed absence of a thermal ordering transition.
Recently measurements on various spin-1/2 quantum magnets such as H$_3$LiIr$_2$O$_6$, LiZn$_2$Mo$_3$O$_8$, ZnCu$_3$(OH)$_6$Cl$_2$ and 1T-TaS$_2$ -- all described by magnetic frustration and quenched disorder but with no other common relation -- never theless showed apparently universal scaling features at low temperature. In particular the heat capacity C[H,T] in temperature T and magnetic field H exhibits T/H data collapse reminiscent of scaling near a critical point. Here we propose a theory for this scaling collapse based on an emergent random-singlet regime extended to include spin-orbit coupling and antisymmetric Dzyaloshinskii-Moriya (DM) interactions. We derive the scaling $C[H,T]/T sim H^{-gamma} F_q[T/H]$ with $F_q[x] = x^{q}$ at small $x$, with $q in$ (0,1,2) an integer exponent whose value depends on spatial symmetries. The agreement with experiments indicates that a fraction of spins form random valence bonds and that these are surrounded by a quantum paramagnetic phase. We also discuss distinct scaling for magnetization with a $q$-dependent subdominant term enforced by Maxwells relations.
Quantum metrology makes use of coherent superpositions to detect weak signals. While in principle the sensitivity can be improved by increasing the density of sensing particles, in practice this improvement is severely hindered by interactions betwee n them. Using a dense ensemble of interacting electronic spins in diamond, we demonstrate a novel approach to quantum metrology. It is based on a new method of robust quantum control, which allows us to simultaneously eliminate the undesired effects associated with spin-spin interactions, disorder and control imperfections, enabling a five-fold enhancement in coherence time compared to conventional control sequences. Combined with optimal initialization and readout protocols, this allows us to break the limit for AC magnetic field sensing imposed by interactions, opening a promising avenue for the development of solid-state ensemble magnetometers with unprecedented sensitivity.
The cradle of quantum spin liquids, triangular antiferromagnets show strong proclivity to magnetic order and require deliberate tuning to stabilize a spin-liquid state. In this brief review, we juxtapose recent theoretical developments that trace the parameter regime of the spin-liquid phase, with experimental results for Co-based and Yb-based triangular antiferromagnets. Unconventional spin dynamics arising from both ordered and disordered ground states is discussed, and the notion of a geometrically perfect triangular system is scrutinized to demonstrate non-trivial imperfections that may assist magnetic frustration in stabilizing dynamic spin states with peculiar excitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا