ﻻ يوجد ملخص باللغة العربية
Unless special conditions apply, the attempt to solve ill-conditioned systems of linear equations with standard numerical methods leads to uncontrollably high numerical error. Often, such systems arise from the discretization of operator equations with a large number of discrete variables. In this paper we show that the accuracy can be improved significantly if the equation is transformed before discretization, a process we call full operator preconditioning (FOP). It bears many similarities with traditional preconditioning for iterative methods but, crucially, transformations are applied at the operator level. We show that while condition-number improvements from traditional preconditioning generally do not improve the accuracy of the solution, FOP can. A number of topics in numerical analysis can be interpreted as implicitly employing FOP; we highlight (i) Chebyshev interpolation in polynomial approximation, and (ii) Olver-Townsends spectral method, both of which produce solutions of dramatically improved accuracy over a naive problem formulation. In addition, we propose a FOP preconditioner based on integration for the solution of fourth-order differential equations with the finite-element method, showing the resulting linear system is well-conditioned regardless of the discretization size, and demonstrate its error-reduction capabilities on several examples. This work shows that FOP can improve accuracy beyond the standard limit for both direct and iterative methods.
Using the framework of operator or Calderon preconditioning, uniform preconditioners are constructed for elliptic operators discretized with continuous finite (or boundary) elements. The preconditioners are constructed as the composition of an opposi
Based on the geometric {it Triangle Algorithm} for testing membership of a point in a convex set, we present a novel iterative algorithm for testing the solvability of a real linear system $Ax=b$, where $A$ is an $m times n$ matrix of arbitrary rank.
We present two minimum residual methods for solving sequences of shifted linear systems, the right-preconditioned shifted GMRES and shifted recycled GMRES algorithms which use a seed projection strategy often employed to solve multiple related proble
The famous greedy randomized Kaczmarz (GRK) method uses the greedy selection rule on maximum distance to determine a subset of the indices of working rows. In this paper, with the greedy selection rule on maximum residual, we propose the greedy rando
We propose a deterministic Kaczmarz method for solving linear systems $Ax=b$ with $A$ nonsingular. Instead of using orthogonal projections, we use reflections in the original Kaczmarz iterative method. This generates a series of points on an $n$-sphe