ﻻ يوجد ملخص باللغة العربية
Scene flow in 3D point clouds plays an important role in understanding dynamic environments. Although significant advances have been made by deep neural networks, the performance is far from satisfactory as only per-point translational motion is considered, neglecting the constraints of the rigid motion in local regions. To address the issue, we propose to introduce the motion consistency to force the smoothness among neighboring points. In addition, constraints on the rigidity of the local transformation are also added by sharing unique rigid motion parameters for all points within each local region. To this end, a high-order CRFs based relation module (Con-HCRFs) is deployed to explore both point-wise smoothness and region-wise rigidity. To empower the CRFs to have a discriminative unary term, we also introduce a position-aware flow estimation module to be incorporated into the Con-HCRFs. Comprehensive experiments on FlyingThings3D and KITTI show that our proposed framework (HCRF-Flow) achieves state-of-the-art performance and significantly outperforms previous approaches substantially.
Scene flow is the three-dimensional (3D) motion field of a scene. It provides information about the spatial arrangement and rate of change of objects in dynamic environments. Current learning-based approaches seek to estimate the scene flow directly
Due to the scarcity of annotated scene flow data, self-supervised scene flow learning in point clouds has attracted increasing attention. In the self-supervised manner, establishing correspondences between two point clouds to approximate scene flow i
Autonomous vehicles operate in highly dynamic environments necessitating an accurate assessment of which aspects of a scene are moving and where they are moving to. A popular approach to 3D motion estimation, termed scene flow, is to employ 3D point
Scene flow depicts the dynamics of a 3D scene, which is critical for various applications such as autonomous driving, robot navigation, AR/VR, etc. Conventionally, scene flow is estimated from dense/regular RGB video frames. With the development of d
In this paper, we propose a Point-Voxel Recurrent All-Pairs Field Transforms (PV-RAFT) method to estimate scene flow from point clouds. Since point clouds are irregular and unordered, it is challenging to efficiently extract features from all-pairs f