ترغب بنشر مسار تعليمي؟ اضغط هنا

Chip-scale terahertz frequency combs through integrated intersubband polariton bleaching

220   0   0.0 ( 0 )
 نشر من قبل Leonardo Viti
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum cascade lasers (QCLs) represent a fascinating accomplishment of quantum engineering and enable the direct generation of terahertz (THz) frequency radiation from an electrically-biased semiconductor heterostructure. Their large spectral bandwidth, high output powers and quantum-limited linewidths have facilitated the realization of THz pulses by active mode-locking and passive generation of optical frequency combs (FCs) through intracavity four-wave-mixing, albeit over a restricted operational regime. Here, we conceive an integrated architecture for the generation of high power (10 mW) THz FCs comprising an ultrafast THz polaritonic reflector, exploiting intersubband cavity polaritons, and a broad bandwidth (2.3-3.8 THz) heterogeneous THz QCL. Quantum cascade lasers (QCLs) represent a fascinating accomplishment of quantum engineering and enable the direct generation of terahertz (THz) frequency radiation from an electrically-biased semiconductor heterostructure. By tuning the group delay dispersion in an integrated geometry, through the exploitation of light induced bleaching of the intersubband-based THz polaritons, we demonstrate spectral reshaping of the QCL emission and stable FC operation over an operational dynamic range of up to 38%, characterized by a single and narrow (down to 700 Hz) intermode beatnote. Our concept provides design guidelines for a new generation of compact, cost-effective, electrically driven chip-scale FC sources based on ultrafast polariton dynamics, paving the way towards the generation of mode locked THz micro-lasers that will strongly impact a broad range of applications in ultrafast sciences, data storage, high-speed communication and spectroscopy.

قيم البحث

اقرأ أيضاً

117 - F. P. Mezzapesa 2020
The ability to engineer quantum-cascade-lasers (QCLs) with ultrabroad gain spectra and with a full compensation of the group velocity dispersion, at Terahertz (THz) frequencies, is a fundamental need for devising monolithic and miniaturized optical f requency-comb-synthesizers (FCS) in the far-infrared. In a THz QCL four-wave mixing, driven by the intrinsic third-order susceptibility of the intersubband gain medium, self-lock the optical modes in phase, allowing stable comb operation, albeit over a restricted dynamic range (~ 20% of the laser operational range). Here, we engineer miniaturized THz FCSs comprising a heterogeneous THz QCL integrated with a tightly-coupled on-chip solution-processed graphene saturable-absorber reflector that preserves phase-coherence between lasing modes even when four-wave mixing no longer provides dispersion compensation. This enables a high-power (8 mW) FCS with over 90 optical modes to be demonstrated, over more than 55% of the laser operational range. Furthermore, stable injection-locking is showed, paving the way to impact a number of key applications, including high-precision tuneable broadband-spectroscopy and quantum-metrology.
Frequency combs based on terahertz quantum cascade lasers feature broadband coverage and high output powers in a compact package, making them an attractive option for broadband spectroscopy. Here, we demonstrate the first multi-heterodyne spectroscop y using two terahertz quantum cascade laser combs. With just 100 $mu$s of integration time, we achieve peak signal-to-noise ratios exceeding 60 dB and a spectral coverage greater than 250 GHz centered at 2.8 THz. Even with room-temperature detectors we are able to achieve peak signal-to-noise ratios of 50 dB, and as a proof-of-principle we use these combs to measure the broadband transmission spectrum of etalon samples. Finally, we show that with proper signal processing, it is possible to extend the multi-heterodyne spectroscopy to quantum cascade laser combs operating in pulsed mode, greatly expanding the range of quantum cascade lasers that could be suitable for these techniques.
The experimental realization of a Kerr frequency comb represented the convergence of research in materials, physics, and engineering, and this symbiotic relationship continues to underpin efforts in comb innovation today. While the initial focus deve loping cavity-based frequency combs relied on existing microresonator architectures and classic optical materials, in recent years, this trend has been disrupted. This paper reviews the latest achievements in frequency comb generation using resonant cavities, placing them within the broader historical context of the field. After presenting well-established material systems and device designs, the emerging materials and device architectures are examined. Specifically, the unconventional material systems as well as atypical device designs that have enabled tailored dispersion profiles and improved comb performance are compared to the current state of art. The remaining challenges and future outlook for the field of cavity-based frequency combs is evaluated.
Frequency combs have revolutionized time and frequency metrology and in recent years, new frequency comb lasers that are highly compact or even on-chip have been demonstrated in the mid-infrared and THz regions of the electromagnetic spectrum. The em erging technologies include electrically pumped quantum and interband cascade semiconductor devices, as well as high-quality factor microresonators. In this guest editorial, the authors summarize recent advances in the field, the potential for rapid broadband spectroscopy, as well as the challenges and prospects for use in molecular gas sensing.
We present an integrated optomechanical and electromechanical nanocavity, in which a common mechanical degree of freedom is coupled to an ultrahigh-Q photonic crystal defect cavity and an electrical circuit. The sys- tem allows for wide-range, fast e lectrical tuning of the optical nanocavity resonances, and for electrical control of optical radiation pressure back-action effects such as mechanical amplification (phonon lasing), cooling, and stiffening. These sort of integrated devices offer a new means to efficiently interconvert weak microwave and optical signals, and are expected to pave the way for a new class of micro-sensors utilizing optomechanical back-action for thermal noise reduction and low-noise optical read-out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا