ﻻ يوجد ملخص باللغة العربية
We use generating functions over group rings to count polynomials over finite fields with the first few coefficients prescribed and a factorization pattern prescribed. In particular, we obtain different exact formulas for the number of monic $n$-smooth polynomial of degree $m$ over a finite field, as well as the number of monic $n$-smooth polynomial of degree $m$ with the prescribed trace coefficient.
We obtain estimates on the number $|mathcal{A}_{boldsymbol{lambda}}|$ of elements on a linear family $mathcal{A}$ of monic polynomials of $mathbb{F}_q[T]$ of degree $n$ having factorization pattern $boldsymbol{lambda}:=1^{lambda_1}2^{lambda_2}cdots n
Let $D$ be a negative integer congruent to $0$ or $1bmod{4}$ and $mathcal{O}=mathcal{O}_D$ be the corresponding order of $ K=mathbb{Q}(sqrt{D})$. The Hilbert class polynomial $H_D(x)$ is the minimal polynomial of the $j$-invariant $ j_D=j(mathbb{C}/m
Given an infinite set of special divisors satisfying a mild regularity condition, we prove the existence of a Borcherds product of non-zero weight whose divisor is supported on these special divisors. We also show that every meromorphic Borcherds pro
We study the distribution of extensions of a number field $k$ with fixed abelian Galois group $G$, from which a given finite set of elements of $k$ are norms. In particular, we show the existence of such extensions. Along the way, we show that the Ha
We give an algorithm that finds a sequence of approximations with Dirichlet coefficients bounded by a constant only depending on the dimension. The algorithm uses the LLL-algorithm for lattice basis reduction. We present a version of the algorithm that runs in polynomial time of the input.