ﻻ يوجد ملخص باللغة العربية
We prove that with high probability over the choice of a random graph $G$ from the ErdH{o}s-Renyi distribution $G(n,1/2)$, a natural $n^{O(varepsilon^2 log n)}$-time, degree $O(varepsilon^2 log n)$ sum-of-squares semidefinite program cannot refute the existence of a valid $k$-coloring of $G$ for $k = n^{1/2 +varepsilon}$. Our result implies that the refutation guarantee of the basic semidefinite program (a close variant of the Lovasz theta function) cannot be appreciably improved by a natural $o(log n)$-degree sum-of-squares strengthening, and this is tight up to a $n^{o(1)}$ slack in $k$. To the best of our knowledge, this is the first lower bound for coloring $G(n,1/2)$ for even a single round strengthening of the basic SDP in any SDP hierarchy. Our proof relies on a new variant of instance-preserving non-pointwise complete reduction within SoS from coloring a graph to finding large independent sets in it. Our proof is (perhaps surprisingly) short, simple and does not require complicated spectral norm bounds on random matrices with dependent entries that have been otherwise necessary in the proofs of many similar results [BHK+16, HKP+17, KB19, GJJ+20, MRX20]. Our result formally holds for a constraint system where vertices are allowed to belong to multiple color classes; we leave the extension to the formally stronger formulation of coloring, where vertices must belong to unique colors classes, as an outstanding open problem.
We prove that with high probability over the choice of a random graph $G$ from the ErdH{o}s-Renyi distribution $G(n,1/2)$, the $n^{O(d)}$-time degree $d$ Sum-of-Squares semidefinite programming relaxation for the clique problem will give a value of a
We prove that for every $epsilon>0$ and predicate $P:{0,1}^krightarrow {0,1}$ that supports a pairwise independent distribution, there exists an instance $mathcal{I}$ of the $mathsf{Max}P$ constraint satisfaction problem on $n$ variables such that no
Several works have shown unconditional hardness (via integrality gaps) of computing equilibria using strong hierarchies of convex relaxations. Such results however only apply to the problem of computing equilibria that optimize a certain objective fu
Given a large data matrix $Ainmathbb{R}^{ntimes n}$, we consider the problem of determining whether its entries are i.i.d. with some known marginal distribution $A_{ij}sim P_0$, or instead $A$ contains a principal submatrix $A_{{sf Q},{sf Q}}$ whose
The degree-$4$ Sum-of-Squares (SoS) SDP relaxation is a powerful algorithm that captures the best known polynomial time algorithms for a broad range of problems including MaxCut, Sparsest Cut, all MaxCSPs and tensor PCA. Despite being an explicit alg