ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrating Geometry-Driven and Data-Driven Positioning via Combinatorial Data Augmentation

37   0   0.0 ( 0 )
 نشر من قبل Seung-Woo Ko
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Precise positioning has become one core topic in wireless communications by facilitating candidate techniques of B5G. Nevertheless, most existing positioning algorithms, categorized into geometric-driven and data-driven approaches, fail to simultaneously fulfill diversified requirements for practical use, e.g., accuracy, real-time operation, scalability, maintenance, etc. This article aims at introducing a new principle, called emph{combinatorial data augmentation} (CDA), a catalyst for the two approaches tight integration. We first explain the concept of CDA and its critical advantages over the two standalone approaches. Then, we confirm the CDAs effectiveness from field experiments based on WiFi round-trip time and inertial measurement units. Lastly, we present its potential beyond positioning, expected to play a critical role in B5G.



قيم البحث

اقرأ أيضاً

Conventional frequentist learning, as assumed by existing federated learning protocols, is limited in its ability to quantify uncertainty, incorporate prior knowledge, guide active learning, and enable continual learning. Bayesian learning provides a principled approach to address all these limitations, at the cost of an increase in computational complexity. This paper studies distributed Bayesian learning in a wireless data center setting encompassing a central server and multiple distributed workers. Prior work on wireless distributed learning has focused exclusively on frequentist learning, and has introduced the idea of leveraging uncoded transmission to enable over-the-air computing. Unlike frequentist learning, Bayesian learning aims at evaluating approximations or samples from a global posterior distribution in the model parameter space. This work investigates for the first time the design of distributed one-shot, or embarrassingly parallel, Bayesian learning protocols in wireless data centers via consensus Monte Carlo (CMC). Uncoded transmission is introduced not only as a way to implement over-the-air computing, but also as a mechanism to deploy channel-driven MC sampling: Rather than treating channel noise as a nuisance to be mitigated, channel-driven sampling utilizes channel noise as an integral part of the MC sampling process. A simple wireless CMC scheme is first proposed that is asymptotically optimal under Gaussian local posteriors. Then, for arbitrary local posteriors, a variational optimization strategy is introduced. Simulation results demonstrate that, if properly accounted for, channel noise can indeed contribute to MC sampling and does not necessarily decrease the accuracy level.
Seismic full-waveform inversion (FWI) is a nonlinear computational imaging technique that can provide detailed estimates of subsurface geophysical properties. Solving the FWI problem can be challenging due to its ill-posedness and high computational cost. In this work, we develop a new hybrid computational approach to solve FWI that combines physics-based models with data-driven methodologies. In particular, we develop a data augmentation strategy that can not only improve the representativity of the training set but also incorporate important governing physics into the training process and therefore improve the inversion accuracy. To validate the performance, we apply our method to synthetic elastic seismic waveform data generated from a subsurface geologic model built on a carbon sequestration site at Kimberlina, California. We compare our physics-consistent data-driven inversion method to both purely physics-based and purely data-driven approaches and observe that our method yields higher accuracy and greater generalization ability.
Vehicle-to-Everything (V2X) will create many new opportunities in the area of wireless communications, while its feasibility on enabling vehicular positioning has not been explored yet. Vehicular positioning is a crucial operation for autonomous driv ing. Its complexity and stringent safety requirement render conventional technologies like RADAR and LIDAR inadequate. This article aims at investigating whether V2X can help vehicular positioning from different perspectives. We first explain V2Xs critical advantages over other approaches and suggest new scenarios of V2X-based vehicular positioning. Then we review the state-of-the-art positioning techniques discussed in the ongoing 3GPP standardization and point out their limitations. Lastly, some promising research directions for V2X-based vehicular positioning are presented, which shed light on realizing fully autonomous driving by overcoming the current barriers.
Autonomous driving (auto-driving) has been becoming a killer technology for next generation vehicles, whereas some fatal accidents grow concerns about its safety. A fundamental function for safer auto-driving is to recognize the vehicles locations, t ermed vehicular positioning. The state-of-the-art vehicular positioning is to rely on anchors that are stationary objects whose locations are known, i.e. satellites for GPS and base stations for cellular positioning. It is important for reliable positioning to install anchors densely, helping find enough anchors nearby. For the deployment to be cost-effective, there are some trials to use backscatter tags as alternative anchors by deploying them on a road surface, but its gain is limited by several reasons such as short contact time and difficulties in maintenance. Instead, we propose a new backscatter-tag assisted vehicular positioning system where tags are deployed along a roadside, which enables the extension of contact duration and facilitates the maintenance. On the other hand, there is a location mismatch between the vehicle and the tag, calling for developing a new backscatter transmission to estimate their relative position. To this end, we design a novel waveform called joint frequency-and-phase modulation (JFPM) for backscatter-tag assisted vehicular positioning where a transmit frequency is modulated for the distance estimation assuming that the relevant signal is clearly differentiable from the others while the phase modulation helps the differentiation. The JFPM waveform leads to exploiting the maximum Degree-of-Freedoms (DoFs) of backscatter channel in which multiple-access and broadcasting channels coexist, leading to more accurate positioning verified by extensive simulations.
Accurate vehicular sensing is a basic and important operation in autonomous driving. Unfortunately, the existing techniques have their own limitations. For instance, the communication-based approach (e.g., transmission of GPS information) has high la tency and low reliability while the reflection-based approach (e.g., RADAR) is incapable of detecting hidden vehicles (HVs) without line-of-sight. This is arguably the reason behind some recent fatal accidents involving autonomous vehicles. To address this issue, this paper presents a novel HV-sensing technology that exploits multi-path transmission from a HV to a sensing vehicle (SV). The powerful technology enables the SV to detect multiple HV-state parameters including position, orientation of driving direction, and size. Its implementation does not even require transmitter-receiver synchronization like conventional mobile positioning techniques. Our design approach leverages estimated information on multi-path (AoA/AoD/ToA) and their geometric relations. As a result, a complex system of equations or optimization problems, where the desired HV-state parameters are variables, can be formulated for different channel-noise conditions. The development of intelligent solution methods ranging from least-square estimator to disk/box minimization yields a set of practical HV-sensing techniques. We study their feasibility conditions in terms of the required number of paths. Furthermore, practical solutions, including sequential path combining and random directional beamforming, are proposed to enable HV-sensing given insufficient paths. Last, realistic simulation of driving in both highway and rural scenarios demonstrates the effectiveness of the proposed techniques. In summary, the proposed technique will enhance the capabilities of existing vehicular sensing technologies by enabling HV-sensing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا