ترغب بنشر مسار تعليمي؟ اضغط هنا

A new mixed finite-element method for the biharmonic problem

84   0   0.0 ( 0 )
 نشر من قبل Abdalaziz Hamdan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Fourth-order differential equations play an important role in many applications in science and engineering. In this paper, we present a three-field mixed finite-element formulation for fourth-order problems, with a focus on the effective treatment of the different boundary conditions that arise naturally in a variational formulation. Our formulation is based on introducing the gradient of the solution as an explicit variable, constrained using a Lagrange multiplier. The essential boundary conditions are enforced weakly, using Nitsches method where required. As a result, the problem is rewritten as a saddle-point system, requiring analysis of the resulting finite-element discretization and the construction of optimal linear solvers. Here, we discuss the analysis of the well-posedness and accuracy of the finite-element formulation. Moreover, we develop monolithic multigrid solvers for the resulting linear systems. Two and three-dimensional numerical results are presented to demonstrate the accuracy of the discretization and efficiency of the multigrid solvers proposed.

قيم البحث

اقرأ أيضاً

82 - Haoran Liu , Michael Neilan , 2021
This paper constructs and analyzes a boundary correction finite element method for the Stokes problem based on the Scott-Vogelius pair on Clough-Tocher splits. The velocity space consists of continuous piecewise quadratic polynomials, and the pressur e space consists of piecewise linear polynomials without continuity constraints. A Lagrange multiplier space that consists of continuous piecewise quadratic polynomials with respect to boundary partition is introduced to enforce boundary conditions as well as to mitigate the lack of pressure-robustness. We prove several inf-sup conditions, leading to the well-posedness of the method. In addition, we show that the method converges with optimal order and the velocity approximation is divergence free.
In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We d erive optimal error estimate and present several numerical tests assessing the validity of the theoretical results.
In this paper, we develop an iterative scheme to construct multiscale basis functions within the framework of the Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM) for the mixed formulation. The iterative procedur e starts with the construction of an energy minimizing snapshot space that can be used for approximating the solution of the model problem. A spectral decomposition is then performed on the snapshot space to form global multiscale space. Under this setting, each global multiscale basis function can be split into a non-decaying and a decaying parts. The non-decaying part of a global basis is localized and it is fixed during the iteration. Then, one can approximate the decaying part via a modified Richardson scheme with an appropriately defined preconditioner. Using this set of iterative-based multiscale basis functions, first-order convergence with respect to the coarse mesh size can be shown if sufficiently many times of iterations with regularization parameter being in an appropriate range are performed. Numerical results are presented to illustrate the effectiveness and efficiency of the proposed computational multiscale method.
The aim of this paper is the numerical study of a class of nonlinear nonlocal degenerate parabolic equations. The convergence and error bounds of the solutions are proved for a linearized Crank-Nicolson-Galerkin finite element method with polynomial approximations of degree $kgeq 1$. Some explicit solutions are obtained and used to test the implementation of the method in Matlab environment.
The locally modified finite element method, which is introduced in [Frei, Richter: SINUM 52(2014), p. 2315-2334] is a simple fitted finite element method that is able to resolve weak discontinuities in interface problems. The method is based on a fix ed structured coarse mesh, which is then refined into sub-elements to resolve an interior interface. In this work, we extend the locally modified finite element method to second order using an isoparametric approach in the interface elements. Thereby we need to take care that the resulting curved edges do not lead to degenerate sub-elements. We prove optimal a priori error estimates in the $L^2$-norm and in a modified energy norm, as well as a reduced convergence order of ${cal O}(h^{3/2})$ in the standard $H^1$-norm. Finally, we present numerical examples to substantiate the theoretical findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا