ترغب بنشر مسار تعليمي؟ اضغط هنا

Consistency checks of results from a Monte Carlo code intercomparison for emitted electron spectra and energy deposition around a single gold nanoparticle irradiated by X-rays

315   0   0.0 ( 0 )
 نشر من قبل Hans Rabus
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Organized by the European Radiation Dosimetry Group (EURADOS), a Monte Carlo code intercomparison exercise was conducted where participants simulated the emitted electron spectra and energy deposition around a single gold nanoparticle (GNP) irradiated by X-rays. In the exercise, the participants scored energy imparted in concentric spherical shells around a spherical volume filled with gold or water as well as the spectral distribution of electrons leaving the GNP. Initially, only the ratio of energy deposition with and without GNP was to be reported. During the evaluation of the exercise, however, the data for energy deposition in the presence and absence of the GNP were also requested. A GNP size of 50 nm and 100 nm diameter was considered as well as two different X-ray spectra (50 kVp and 100kVp). This introduced a redundancy that can be used to cross-validate the internal consistency of the simulation results. In this work, evaluation of the reported results is presented in terms of integral quantities that can be benchmarked against values obtained from physical properties of the radiation spectra and materials involved. The impact of different interaction cross-section datasets and their implementation in the different Monte Carlo codes is also discussed.



قيم البحث

اقرأ أيضاً

Results of a Monte Carlo code intercomparison exercise for simulations of the dose enhancement from a gold nanoparticle (GNP) irradiated by X-rays have been recently reported. To highlight potential differences between codes, the dose enhancement rat ios (DERs) were shown for the narrow-beam geometry used in the simulations, which leads to values significantly higher than unity over distances in the order of several tens of micrometers from the GNP surface. As it has come to our attention that the figures in our paper have given rise to misinterpretation as showing the DERs of GNPs under diagnostic X-ray irradiation, this article presents estimates of the DERs that would have been obtained with realistic radiation field extensions and presence of secondary particle equilibrium (SPE). These DER values are much smaller than those for a narrow-beam irradiation shown in our paper, and significant dose enhancement is only found within a few hundred nanometers around the GNP. The approach used to obtain these estimates required the development of a methodology to identify and, where possible, correct results from simulations whose implementation deviated from the initial exercise definition. Based on this methodology, literature on Monte Carlo simulated DERs has been critically assessed.
An intercomparison of microdosimetric and nanodosimetric quantities simulated Monte Carlo codes is in progress with the goal of assessing the uncertainty contribution to simulated results due to the uncertainties of the electron interaction cross-sec tions used in the codes. In the first stage of the intercomparison, significant discrepancies were found for nanodosimetric quantities as well as for microdosimetric simulations of a radiation source placed at the surface of a spherical water scoring volume. This paper reports insight gained from further analysis, including additional results for the microdosimetry case where the observed discrepancies in the simulated distributions could be traced back to the difference between track-structure and condensed-history approaches. Furthermore, detailed investigations into the sensitivity of nanodosimetric distributions to alterations in inelastic electron scattering cross-sections are presented which were conducted in the lead up to the definition of an approach to be used in the second stage of the intercomparison to come. The suitability of simulation results for assessing the sought uncertainty contributions from cross-sections is discussed and a proposed framework is described.
278 - M. Mehnaz , L.H. Yang , Y.B. Zou 2019
Liquid water has been proved to be an excellent medium for specimen structure imaging by a scanning electron microscope. Knowledge of electron-water interaction physics and particularly the secondary electron yield is essential to the interpretation of the imaging contrast. However, very little is known up to now experimentally on the low energy electron interaction with liquid water because of certain practical limitations. It is then important to gain some useful information about electron emission from water by a Monte Carlo (MC) simulation technique that can numerically model electron transport trajectories in water. In this study, we have performed MC simulations of electron emission from liquid water in the primary energy range of 50 eV-30 keV by using two different codes, i.e. a classical MC (CMC) code developed in our laboratory and the Geant4-DNA (G4DNA) code. The calculated secondary electron yield and electron backscattering coefficient are compared with experimental results wherever applicable to verify the validity of physical models for the electron-water interaction. The secondary electron yield vs. primary energy curves calculated by the two codes present the same generic curve shape as that of metals but in rather different absolute values. G4DNA yields the underestimated absolute values due to the application of one step thermalization model by setting a cutoff energy at 7.4 eV so that the low energy losses due to phonon excitations are omitted. Our CMC calculation of secondary electron yield is closer to the experimental data and the energy distribution is reasonable. It is concluded that a full dielectric function data at low energy loss values below 7.4 eV shall be employed in G4DNA model for the modeling of low energy electrons.
123 - M. Belhaj , J. Roupie 2013
The behaviour of electron emission under electron impact at very low energy is of great importance in many applications such as high energy physics, satellites, nuclear reactors, etc. However the question of the total electron reflectivity is still i n discussion. Our experimental and theoretical studies show that the total reflectivity at very low energy is far from being an obvious fact. Moreover, our results show that the yield is close to zero and not equal to one for low energy incident electron.
Optical nanoantennas are a novel tool to investigate previously unattainable dimensions in the nanocosmos. Just like their radio-frequency equivalents, nanoantennas enhance the light-matter interaction in their feed gap. Antenna enhancement of small signals promises to open a new regime in linear and nonlinear spectroscopy on the nanoscale. Without antennas especially the nonlinear spectroscopy of single nanoobjects is very demanding. Here, we present for the first time antenna-enhanced ultrafast nonlinear optical spectroscopy. In particular, we utilize the antenna to determine the nonlinear transient absorption signal of a single gold nanoparticle caused by mechanical breathing oscillations. We increase the signal amplitude by an order of magnitude which is in good agreement with our analytical and numerical models. Our method will find applications in linear and nonlinear spectroscopy of nanoobjects, ranging from single protein binding events via nonlinear tensor elements to the limits of continuum mechanics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا