ﻻ يوجد ملخص باللغة العربية
Rare information on photodisintegration reactions of nuclei with mass numbers $A approx 160$ at astrophysical conditions impedes our understanding of the origin of $p$-nuclei. Experimental determination of the key ($p,gamma$) cross sections has been playing an important role to verify nuclear reaction models and to provide rates of relevant ($gamma,p$) reactions in $gamma$-process. In this paper we report the first cross section measurements of $^{160}$Dy($p,gamma$)$^{161}$Ho and $^{161}$Dy($p,n$)$^{161}$Ho in the beam energy range of 3.4 - 7.0 MeV, partially covering the Gamow window. Such determinations are possible by using two targets with various isotopic fractions. The cross section data can put a strong constraint on the nuclear level densities and gamma strength functions for $A approx$ 160 in the Hauser-Feshbach statistical model. Furthermore, we find the best parameters for TALYS that reproduce the A $thicksim$ 160 data available, $^{160}$Dy($p,gamma$)$^{161}$Ho and $^{162}$Er($p,gamma$)$^{163}$Tm, and recommend the constrained $^{161}$Ho($gamma,p$)$^{160}$Dy reaction rates over a wide temperature range for $gamma$-process network calculations. Although the determined $^{161}$Ho($gamma$, p) stellar reaction rates at the temperature of 1 to 2 GK can differ by up to one order of magnitude from the NON-SMOKER predictions, it has a minor effect on the yields of $^{160}$Dy and accordingly the $p$-nuclei, $^{156,158}$Dy. A sensitivity study confirms that the cross section of $^{160}$Dy($p$, $gamma$)$^{161}$Ho is measured precisely enough to predict yields of $p$-nuclei in the $gamma$-process.
The astrophysical S-factor of 14N(p,gamma)15O has been measured for effective center-of-mass energies between E_eff = 119 and 367 keV at the LUNA facility using TiN solid targets and Ge detectors. The data are in good agreement with previous and rece
The synthesis of heavy, proton rich isotopes in the astrophysical gamma-process proceeds through photodisintegration reactions. For the improved understanding of the process, the rates of the involved nuclear reactions must be known. The reaction 128
The total cross sections for the $^{152}$Gd(p,$gamma$)$^{153}$Tb and $^{152}$Gd(p,n)$^{152}$Tb reactions have been measured by the activation method at effective center-of-mass energies mbox{$3.47 leq E_mathrm{c.m.}^mathrm{eff}leq 7.94$ MeV} and mbox
The cross sections of the 70Ge(p,gamma)71As and 76Ge(p,n)76As reactions have been measured with the activation method in the Gamow window for the astrophysical p process. The experiments were carried out at the Van de Graaff and cyclotron accelerator
In the model calculations of heavy element nucleosynthesis processes the nuclear reaction rates are taken from statistical model calculations which utilize various nuclear input parameters. It is found that in the case of reactions involving alpha pa